

RAPPORT DES ACTIVITÉS DE VÉRIFICATION DU PROJET DE CRÉDITS COMPENSATOIRES VISANT LA DESTRUCTION DU CH₄ AU LES DE SAINT-LAMBERT-DE-LAUZON POUR LA PÉRIODE 2023

Pour:

WSP CANADA INC.

Monsieur Marc Bisson

Directeur de projets, Gestion environnementale
1135, boul. Lebourgneuf
Québec (Québec) G2K 0M5
Téléphone: 581 814-5882

marc.bisson@wsp.com

Par:

ENVIRO-ACCÈS INC.

268, rue Aberdeen, bureau 204, Sherbrooke (Québec) J1H 1W5 Téléphone : 819-823-2230

www.enviroaccess.ca

Avis de vérification

Aux gestionnaires de : WSP CANADA INC.

Enviro-accès inc. (Enviro-accès) a été retenue par WSP Canada inc. (WSP) afin de vérifier, en tant que tierce partie indépendante, le rapport de projet de crédits compensatoires visant la destruction de CH₄ capté d'un lieu d'enfouissement intitulé « Réduction d'émissions de GES au LES de Saint-Lambert-de-Lauzon LE016 » (Déclaration GES), daté du 13 février 2024. WSP est responsable de la préparation de la Déclaration GES conformément au Règlement relatif aux projets de valorisation et de destruction de méthane provenant d'un lieu d'enfouissement admissibles à la délivrance de crédits compensatoires (Règlement) du ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP) du Québec. Pour la période du 1^{er} janvier au 31 décembre 2023, la quantité totale de réductions d'émissions de gaz à effet de serre (GES) déclarée par WSP pour le projet de réduction d'émissions de GES au LES de Saint-Lambert-de-Lauzon (Projet) est de 9 348 tCO₂éq attribuable au méthane capté et détruit.

Les objectifs de la vérification étaient de confirmer avec un niveau d'assurance raisonnable que la Déclaration GES a été réalisée conformément aux exigences du Règlement pour la période et que la quantité de réductions d'émissions de GES déclarée est exempte d'écart important. Toutes les sources émettant dans l'atmosphère des GES, tels que définis à l'annexe B du Règlement, sont visées. Les types de GES inclus sont le CO₂, le CH₄ et le N₂O.

La vérification a été conduite conformément à la norme ISO 14064-3:2019. La portée de la vérification comprenait le Projet et le scénario de référence, ainsi que les équipements reliés au Projet (système de destruction) prescrits à l'annexe A du Règlement. Les critères de vérification étaient les exigences du Règlement en vigueur au moment de la tenue des activités de vérification.

Enviro-accès est tenue d'exprimer un avis sur la Déclaration GES en se basant sur la vérification. Ainsi, l'équipe de vérification a examiné les documents fournis et a exécuté les procédures de collecte de preuves suivantes pour évaluer la Déclaration GES :

- ✓ revue des équipements et des installations;
- ✓ évaluation de la conformité des sources, puits et réservoirs (SPRs) du scénario de référence et du Projet avec les exigences du Règlement;
- ✓ évaluation des méthodologies de calcul des réductions d'émissions de GES utilisées, incluant le traçage des paramètres et des potentiels de réchauffement global utilisés;
- ✓ recalcul de la quantité de réductions d'émissions de GES déclarée;
- évaluation de la conformité aux exigences en matière d'échantillonnage, d'analyse et de mesure;

 vévaluation de la conformité aux exigences en matière de calibration et d'entretien des instruments servant à la mesure des données GES;

✓ retraçage et traçage des données utilisées pour le calcul des réductions d'émissions de GES;

évaluation des méthodes d'estimation des données manquantes;

 évaluation du système d'information GES, soit des politiques, processus et méthodes permettant d'établir, de gérer, de mettre à jour, d'accéder et d'enregistrer les informations GES;

√ évaluation des procédures de contrôle de la qualité des données et des calculs;

✓ évaluation de la conformité de la Déclaration GES et de l'application du plan de surveillance.

Les données corroborant la Déclaration GES sont de type historique et proviennent de mesures effectuées par WSP.

Enviro-accès conclut, avec un niveau d'assurance raisonnable, que la Déclaration GES pour la période du 1^{er} janvier au 31 décembre 2023 de WSP pour son projet de captage et destruction du biogaz au LES de Saint-Lambert-de-Lauzon est conforme aux critères de vérification et que la quantité de réductions d'émissions GES déclarée est exempte d'écarts importants.

L'avis de vérification fourni par Enviro-accès est donc positif.

Manon Laporte

Présidente-directrice générale

Enviro-accès inc

Numéro d'accréditation au Conseil canadien des normes : 1009-7/2

Le 14 février 2024

TABLE DES MATIÈRES

1.	SOM	MAIRE DES INFORMATIONS SUR LA VÉRIFICATION1
	1.1	Information sur l'organisme de vérification1
	1.2	Information sur l'équipe de vérification affectée au mandat1
	1.3	Information sur les activités de vérification2
	1.4	Information sur le projet vérifié3
2.	MÉTI	HODOLOGIE ET RÉSULTATS DE LA VÉRIFICATION4
	2.1	Non-conformités non résolues issues des vérifications précédentes4
	2.2	Inspection visuelle des équipements et installations4
	2.3	Revue des sources, puits et réservoirs inclus au Projet et au scénario de référence4
	2.4	Méthodologies de calculs des réductions d'émissions de GES5
	2.5	Recalcul de la quantité de réductions d'émissions de GES déclarées5
	2.6	Échantillonnage, analyse et mesure5
	2.7	Calibration et entretien des instruments5
	2.8	Retraçage et traçage des données5
	2.9	Estimation des données manquantes6
	2.10	Évaluation du système d'information GES6
	2.11	Évaluation des procédures de contrôle de la qualité des données et des calculs6
	2.12	Conformité de la Déclaration GES et application du plan de surveillance7
	2.13	Faits découverts après la vérification7
3.	CON	CLUSIONS DE LA VÉRIFICATION8
	3.1	Sommaire des écarts résiduels8
	3.2	Sommaire des non-conformités8
	3.3	Sommaire des opportunités d'amélioration
LIST	E DE	S TABLEAUX
_		Résultats du retraçage et du traçage des données6
A NII	MEVI	=c
	NEXI	
ANNEXE I		DÉCLARATION DE CONFORMITÉ ET DE LA SITUATION AU NIVEAU DES CONFLITS D'INTÉRÊTS
ANNE		PERSONNES INTERVIEWÉES
		PLAN DE VÉRIFICATION
ANNE	XE IV	DÉCLARATION GES DU PROJET DE CAPTAGE ET DESTRUCTION DU BIOGAZ AU LES DE SAINT-LAMBERT-DE-LAUZON POUR LA PÉRIODE 2023

1. SOMMAIRE DES INFORMATIONS SUR LA VÉRIFICATION

1.1 Information sur l'organisme de vérification

Nom et coordonnées	Enviro-accès inc. 268, rue Aberdeen, bureau 204 Sherbrooke (Québec) J1H 1W5 Tél.: 819-823-2230	
Représentant	Manon Laporte, B.Sc., MBA Présidente-directrice générale mlaporte@enviroaccess.ca	
Organisme d'accréditation	Conseil canadien des normes 55, rue Metcalfe, bureau 600 Ottawa (Ontario) K1P 6L5 Tél.: 613-238-3222 Fax: 613-569-7808	
Numéro d'accréditation	1009-7/2	
Date d'accréditation	29 juillet 2011	
Période de validité de l'accréditation	Jusqu'au 29 juillet 2027	
Domaine d'activité inclus à la portée de l'accréditation	G3 SF Décomposition des déchets, manipulation et élimination	

1.2 Information sur l'équipe de vérification et l'examinateur indépendant affectés au mandat

	Melissa Windsor, B.Sc.A
Vérificatrice en chef	268, rue Aberdeen, bureau 204
et experte technique	Sherbrooke (Québec) J1H 1W5
et experte teemingae	Tél. : 819-823-2230
	mwindsor@enviroaccess.ca
	Emmy Leduc
	268, rue Aberdeen, bureau 204
Vérificatrice	Sherbrooke (Québec) J1H 1W5
	Tél. : 819-823-2230
	eleduc@enviroaccess.ca
	Vickie-Lisa Angers, ing., M.Env.
Examinatrice	268, rue Aberdeen, bureau 204
	Sherbrooke (Québec) J1H 1W5
indépendante	Tél. : 819-823-2230
	vlangers@enviroaccess.ca

1.3 Information sur les activités de vérification

	Exprimer une opinion sur la conformité de la Déclaration GES par
Objectifs	rapport aux exigences du Règlement relatif aux projets de valorisation et de destruction de méthane provenant d'un lieu d'enfouissement admissibles à la délivrance de crédits compensatoires (ci-après le Règlement). Déterminer si la quantité de réductions d'émissions de GES déclarée est exempte d'écarts importants.
Période de la tenue des activités	26 janvier au 14 février 2024
Date de la visite	Une visite de site n'était pas requise puisqu'une visite a été réalisée dans le cadre d'une vérification effectuée au cours des deux périodes de déclaration précédentes. Une rencontre virtuelle a tout de même eu lieu en date du 8 février 2024.
Niveau d'assurance	Raisonnable
Critères de	Exigences du Règlement en vigueur au moment de réaliser le
vérification	mandat
Norme de	ISO 14064-3:2019 — Spécifications et lignes directrices pour la
vérification	vérification et la validation des déclarations des gaz à effet de serre
Seuil d'importance relative	5 % des réductions d'émissions de GES totales déclarées
Sources d'émissions visées	Tous les SPRs mentionnés à l'annexe B du Règlement
Types de GES	CO ₂ , CH ₄ , N ₂ O
Période couverte	1 ^{er} janvier au 31 décembre 2023
Conservation des documents	Tous les documents fournis initialement par WSP ou recueillis lors des activités de vérification (photocopies, photos, notes des vérificateurs, fichiers électroniques, correspondances électroniques ou autres) sont conservés sous format électronique sur un serveur sécurisé ou dans un classeur à accès restreint si seulement une copie papier est disponible. L'ensemble de ces documents sera conservé pour une durée minimale de sept années. Les dossiers de vérification peuvent être fournis sur demande écrite pour des motifs raisonnables et avec le consentement écrit de WSP.
Absence de conflits d'intérêts	Une série d'exigences concernant les conflits d'intérêts entre le promoteur du projet, ses dirigeants, l'organisme de vérification et l'équipe de vérification. Ainsi, une évaluation des risques pour l'impartialité a été réalisée par l'équipe de vérification afin d'évaluer les conflits d'intérêts (réels et potentiels) entre elle-même, l'organisme de vérification et le promoteur. Une déclaration d'absence de conflit d'intérêts est disponible en annexe.

1.4 Information sur le projet vérifié

Nom du promoteur	WSP Canada inc.		
Informations sur le	LES de Saint-Lambert-de-Lauzon – LE016		
site vérifié	517 rue Saint-Aimé		
site verille	Saint-Lambert-de-Lauzon (Québec) GOS 2W0		
Nom et coordonnées	Marc Bisson		
	Directeur de projets, Gestion environnementale		
de la personne contact	Tél. : 581 814-5882		
COIIIaci	marc.bisson@wsp.com		
Infrastructures	Captage et destruction de biogaz d'un lieu d'enfouissement		
physiques, activités	sanitaire		
et technologies			
Réductions			
d'émissions de GES	9 348 tCO₂éq		
déclarées pour la	3 5 .5 .552254		
période vérifiée			

2. MÉTHODOLOGIE ET RÉSULTATS DE LA VÉRIFICATION

2.1 Non-conformités non résolues issues des vérifications précédentes

Il n'y a pas de non-conformité non résolue provenant de vérifications précédentes.

2.2 Revue des équipements et installations

Aucune visite du site de captage et de destruction du gaz d'enfouissement n'a été effectuée puisqu'une telle visite a été réalisée dans le cadre d'une vérification effectuée au cours des deux périodes de déclaration précédentes.

Lors de la rencontre réalisée par vidéoconférence avec les responsables de la Déclaration GES de WSP, il a été confirmé qu'aucun changement majeur pouvant avoir un impact significatif sur les émissions de GES n'a été apporté à l'installation par rapport à la dernière vérification. De plus, le fonctionnement des équipements a été vérifié par une extraction de données effectuée lors de cette rencontre virtuelle ainsi que par la visite des techniciens de Consulair lors de la vérification du débitmètre en date du 31 octobre 2023 et de Demesa inc. lors de l'étalonnage de l'analyseur de méthane le 17 octobre 2023.

Enviro-accès conclut que l'installation de captage et de destruction utilisée par WSP fonctionnait conformément aux exigences du Règlement durant la période du 1^{er} janvier au 31 décembre 2023.

2.3 Revue des sources, puits et réservoirs inclus au Projet et au scénario de référence

Une revue des sources d'émission et des changements apportés aux opérations a été réalisée avec la collaboration des responsables de la Déclaration GES de WSP.

Aucun changement majeur pouvant avoir un impact significatif sur les réductions d'émissions de GES n'a été apporté au système de captage et de destruction du lieu d'enfouissement par rapport à la dernière vérification effectuée par Enviro-accès. Tel que mentionné dans la Déclaration GES, WSP n'a pas inclus la combustion de propane au total des réductions d'émissions déclarées puisque les émissions associées à cette source ont été jugées négligeables (0,9 tCO₂éq émises depuis 2018).

Enviro-accès conclut que WSP a considéré l'ensemble des sources, puits et réservoirs (SPR) visés à l'annexe B du Règlement.

2.4 Méthodologies de calculs des réductions d'émissions de GES

Enviro-accès a revu l'ensemble des méthodologies utilisées et appliquées par WSP pour le calcul des réductions d'émissions de GES du Projet.

Aucune non-conformité n'a été relevée.

Enviro-accès conclut que WSP a calculé les réductions d'émissions de GES conformément au chapitre V du Règlement.

2.5 Recalcul de la quantité de réductions d'émissions de GES déclarées

Enviro-accès a effectué un recalcul de la quantité de réductions d'émissions de GES déclarée pour le Projet.

Aucun écart n'a été constaté.

Enviro-accès conclut que les calculs des réductions d'émissions de GES sont exempts d'écarts importants.

2.6 Échantillonnage, analyse et mesure

Les fréquences d'échantillonnage ainsi que les méthodologies d'analyse et de mesure utilisées ont été examinées pour toutes les sources d'émission incluses à la portée de la vérification.

Enviro-accès conclut que WSP a respecté les fréquences d'échantillonnage ainsi que les méthodologies d'analyse et de mesure prévues au Règlement.

2.7 Calibration et entretien des instruments

Les rapports de vérification de l'exactitude du débitmètre et de calibration de l'analyseur de méthane servant à la mesure des paramètres utilisés dans les calculs effectués pour déterminer les réductions d'émissions de GES déclarées ont été examinés.

Enviro-accès conclut que la calibration et l'entretien des équipements servant à la mesure des paramètres utilisés dans les calculs des réductions d'émissions de GES sont effectués conformément aux exigences du chapitre V du Règlement.

2.8 Retraçage et traçage des données

Le retraçage et le traçage des données utilisées pour calculer les réductions d'émissions de GES du Projet (100 % du méthane capté et détruit) a été fait. Les types de données et les résultats obtenus sont présentés dans le tableau suivant.

Tableau 1 : Résultats du retraçage et du traçage des données

Sources d'émission de GES		Données	Observations
Destruction du CH ₄ issu	✓	Débit du gaz d'enfouissement	Aucune divergence n'a été
du lieu d'enfouissement		dirigé vers la torche	observée.
	✓	Concentration de CH ₄ dans le gaz	
		d'enfouissement	
	✓	Température et pression de	
		référence du débitmètre	
	✓	Efficacité du dispositif de	
		destruction du CH ₄	
	✓	Facteur d'oxydation du CH₄ par	
		les bactéries au sol	

Enviro-accès conclut que les données servant aux calculs des réductions d'émissions de GES déclarées sont exemptes d'écarts importants.

2.9 Estimation des données manquantes

WSP n'a effectué aucun remplacement de données manquantes pour la période 2023.

2.10 Évaluation du système d'information GES

Lors de la rencontre, une entrevue avec le personnel a été effectuée afin d'identifier et d'évaluer les politiques, les processus et les méthodes permettant d'établir, de gérer, de mettre à jour, d'accéder et d'enregistrer les informations servant à la Déclaration GES. L'équipe de vérification a confirmé que les données et les informations servant à la Déclaration GES sont conservées depuis le début de la période d'admissibilité du Projet et que WSP a mis en place des procédures afin que les données soient conservées pour un minimum de sept ans.

Enviro-accès conclut donc que les procédures de conservation et d'accès aux informations sont conformes aux exigences de l'article 10 du Règlement et que le système d'information GES est adéquat.

2.11 Évaluation des procédures de contrôle de la qualité des données et des calculs

WSP a mis en place bon nombre de contrôles qui permettent d'assurer la qualité des données servant aux calculs des réductions d'émissions de GES déclarées ainsi que celle des calculs euxmêmes. Entre autres, WSP fait un suivi journalier pour identifier rapidement les dérives ou les données aberrantes et fait vérifier ses calculs par une seconde personne afin d'éviter les erreurs.

Enviro-accès conclut que les procédures de contrôle de la qualité des données et des calculs sont suffisantes pour les besoins de la déclaration.

2.12 Conformité de la Déclaration GES et application du plan de surveillance

La Déclaration GES de WSP et l'application du plan de surveillance ont été revues.

Enviro-accès conclut que la Déclaration GES ainsi que l'application du plan de surveillance sont conformes aux exigences du Règlement.

2.13 Faits découverts après la vérification

Tel que stipulé à la section 10 de la norme ISO 14064-3:2019, si des écarts importants sont découverts après la vérification, Enviro-accès devrait en être informée par écrit dans les meilleurs délais. Au besoin, le rapport de vérification sera rectifié et un nouvel avis de vérification pourrait être émis.

3. CONCLUSIONS DE LA VÉRIFICATION

3.1 Sommaire des écarts résiduels

Aucun écart résiduel n'a été constaté.

3.2 Sommaire des non-conformités

Aucune non-conformité n'a été identifiée.

3.3 Sommaire des opportunités d'amélioration

Aucune opportunité d'amélioration n'a été identifiée.

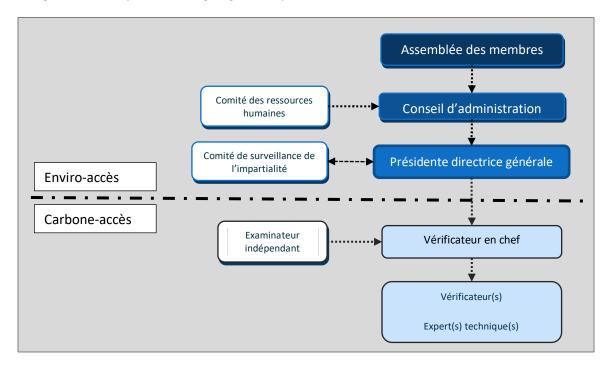
ANNEXES

ANNEXE I DÉCLARATION DE CONFORMITÉ ET DE LA SITUATION AU NIVEAU DES CONFLITS D'INTÉRÊTS

Nom et coordonnées de l'organisme de vérification

Siège social 268, rue Aberdeen, bureau 204 Sherbrooke (Québec) J1H 1W5

Tél.: 819-823-2230 enviro@enviroaccess.ca


Domaines d'activités inclus à la portée de l'accréditation

Enviro-accès inc. est un organisme accrédité selon la norme *ISO 14065:2020* par le Conseil canadien des normes dans le cadre du *Programme d'accréditation pour les gaz à effet de serre (PAGES)*. Le tableau suivant présente les domaines d'activités inclus à la portée de l'accréditation d'Enviro-accès :

Domaine	es d'activités
Organisat	ion
G1 S1.1	Général : Service
G1 S2	Procédés généraux de fabrication
G1 S3.1	Production d'énergie et transferts d'électricité : Production d'énergie
G1 S3.2	Production d'énergie et transferts d'électricité : Transferts d'électricité
G1 S4	Activité minière et extraction de minéraux
G1 S5	Production de métaux
G1 S6	Industrie chimique
G1 S7	Extraction de pétrole et de gaz, production et raffinage, y compris les produits pétrochimiques
G1 S8	Manutention et élimination des déchets
G1 S9	Agriculture, foresterie et changement d'affectation des terres (AFOLU)
Projet - Va	
G2 SA.1	Réduction des émissions de GES provenant de la combustion de carburants : Production d'énergie renouvelable
G2 SA.3	Réduction des émissions de GES provenant de la combustion de carburant : Transport
G2 SC	Réduction et élimination des émissions de GES provenant de l'agriculture, de la foresterie et des
02.00	autres utilisations des terres (AFOLU)
G2 SF	Décomposition des déchets, manipulation et élimination
VCS 14	Agriculture, foresterie, utilisation des terres
Projet - Ve	
G3 SA.1	Réduction des émissions de GES provenant de la combustion de carburants : Production d'énergie renouvelable
G3 SA.3	Réduction des émissions de GES provenant de la combustion de carburant : Transport
G3 SB	Réduction des émissions de GES provenant de procédés industriels (non-combustion, réactions
	chimiques, émissions chimiques fugitives, torchage et éventage du pétrole, etc.)
G3 SC	Réduction et élimination des émissions de GES provenant de l'agriculture, de la foresterie et d'autres
	utilisations des terres (AFOLU)
G3 SF	Décomposition des déchets, manipulation et élimination
VCS 14	Agriculture, foresterie, utilisation des terres
Programm	ne de réglementation des carburants propres (RCP)
2	Combustibles renouvelables/Biocombustibles/Combustibles à faible intensité en carbone (IC)
	Combustibles remouvelables/ Biocombustibles/ Combustibles a Taible intensite en Carbone (IC)

Organigramme de l'organisme de vérification

La figure suivante présente l'organigramme pour les activités de vérification d'Enviro-accès :

Équipe de vérification et examinateur indépendant

Le tableau qui suit présente les noms et coordonnées des membres de l'équipe de vérification et de l'examinateur indépendant affectés au mandat.

Rôle	Nom	Coordonnées
Vérificatrice en chef et experte technique	Melissa Windsor, B.Sc.A	268, rue Aberdeen, bureau 204 Sherbrooke (Québec) J1H 1W5 Tél.: 819-823-2230 mwindsor@enviroaccess.ca
Vérificatrice	Emmy Leduc	268, rue Aberdeen, bureau 204 Sherbrooke (Québec) J1H 1W5 Tél. : 819-823-2230 eleduc@enviroaccess.ca
Examinatrice indépendante	Vickie-Lisa Angers, ing., M.Env.	268, rue Aberdeen, bureau 204 Sherbrooke (Québec) J1H 1W5 Tél. : 819-823-2230 vlangers@enviroaccess.ca

Organisme de vérification

Enviro-accès déclare que les exigences des articles 44 et 45 du *Règlement relatif aux projets de valorisation et de destruction de méthane provenant d'un lieu d'enfouissement admissibles à la délivrance de crédits compensatoires* concernant les conflits d'intérêts sont satisfaites et que les activités de vérification ont été réalisées conformément à celui-ci de même qu'à la norme ISO 14064-3:2019.

Date: 14 février 2024

Date : 14 février 2024

Date: 14 février 2024

ENVIRO-ACCÈS INC.

Manon Laporte, B.Sc., MBA *Présidente-directrice générale*

Vérificatrice en chef

En tant que vérificatrice en chef, je déclare être compétente et avoir participé à toutes les activités du processus de vérification qui ont été réalisées conformément au Règlement relatif aux projets de valorisation et de destruction de méthane provenant d'un lieu d'enfouissement admissibles à la délivrance de crédits compensatoires et à la norme ISO 14064-3:2019.

Melissa Windsor, B.Sc.A

Examinatrice indépendante

En tant qu'examinatrice indépendante, je déclare également être compétente et m'être assurée que toutes les étapes du processus de vérification ont été complétées dans le respect des exigences du Règlement relatif aux projets de valorisation et de destruction de méthane provenant d'un lieu d'enfouissement admissibles à la délivrance de crédits compensatoires et de la norme ISO 14064-3:2019 et que les preuves recueillies par l'équipe de vérification sont suffisantes pour supporter l'opinion donnée dans l'avis de vérification avec un niveau d'assurance raisonnable.

Vickie-Lisa Angers, ing., M.Env.

Ordre des ingénieurs du Québec: 6008314

ANNEXE II PERSONNES INTERVIEWÉES

Nom	Rôle/Responsabilité	Sujet(s) abordé(s)
Marc Bisson	 Directeur de projet, Gestion environnementale 	 Extraction des données Méthodologies de calcul Sources à déclarer Calibration des instruments Contrôle de la qualité Conservation des données
Catherine Verrault	 Directrice de projet, Sciences de la Terre et environnement 	

ANNEXE III PLAN DE VÉRIFICATION

PLAN DE VÉRIFICATION DU RAPPORT DE PROJET DE CAPTAGE ET DE DESTRUCTION DU BIOGAZ DE WSP – LES DE SAINT-LAMBERT-DE-LAUZON POUR LA PÉRIODE 2023

Pour:

WSP Canada Inc.

Monsieur Marc Bisson
Directeur de projets, Gestion environnementale
1135, boul. Lebourgneuf
Québec (Québec) G2K 0M5
Tél.: 581 814-5882
marc.bisson@wsp.com

RENSEIGNEMENTS SUR LE MANDAT

A. Information sur l'organisme de vérification

	Enviro-accès inc.
Nom et coordonnées	268, rue Aberdeen, bureau 204
Nom et coordonnees	Sherbrooke (Québec) J1H 1W5
	Tél.: 819-823-2230
	Manon Laporte, B.Sc., MBA
Représentant	Présidente-directrice générale
	mlaporte@enviroaccess.ca
	Conseil canadien des normes
Organisma	55, rue Metcalfe, bureau 600
Organisme	Ottawa (Ontario) K1P 6L5
d'accréditation	Tél.: 613-238-3222
	Fax: 613-569-7808
Numéro	1000.7/2
d'accréditation	1009-7/2
Date d'accréditation	29 juillet 2011
Domaine d'activité	
inclus à la portée de	G3 SF Décomposition des déchets, manipulation et élimination
l'accréditation	

B. Information sur l'équipe de vérification et l'examinateur indépendant affectés au mandat

Vérificatrice en chef et experte technique	Melissa Windsor, B.Sc.A 268, rue Aberdeen, bureau 204 Sherbrooke (Québec) J1H 1W5 Tél.: 819-823-2230 mwindsor@enviroaccess.ca
Vérificatrice	Emmy Leduc 268, rue Aberdeen, bureau 204 Sherbrooke (Québec) J1H 1W5 Tél.: 819-823-2230 eleduc@enviroaccess.ca
Examinatrice indépendante	Vickie-Lisa Angers, ing., M.Env. 268, rue Aberdeen, bureau 204 Sherbrooke (Québec) J1H 1W5 Tél.: 819-823-2230 vlangers@enviroaccess.ca

C. Information sur les activités de vérification

Objectifs	Exprimer une opinion sur la conformité du rapport de projet par rapport aux exigences du Règlement relatif aux projets de valorisation et de destruction de méthane provenant d'un lieu d'enfouissement admissibles à la délivrance de crédits compensatoires (ci-après le Règlement). Déterminer si la quantité de réductions d'émissions de GES déclarée est exempte d'écarts importants.
Niveau d'assurance	Raisonnable
Critères de	Exigences du Règlement en vigueur au moment de réaliser le
vérification	mandat
Norme de	ISO 14064-3:2019 — Spécifications et lignes directrices pour la
vérification	vérification et la validation des déclarations des gaz à effet de serre
Seuil d'importance	5 % du total des réductions d'émissions incluses à la portée de la
relative	vérification
Sources d'émissions	Toute source émettant à l'atmosphère des GES mentionnés au
visées	Règlement
Types de GES	CO ₂ , CH ₄ , N ₂ O
Période couverte	1 ^{er} janvier au 31 décembre 2023
Échéancier prévu	4 semaines à la suite de la réception des données

D. Information sur le promoteur de projet et le projet vérifié

Nom de l'entreprise	WSP Canada Inc.	
Nom et coordonnées	LES de Saint-Lambert-de-Lauzon	
du site vérifié	517 rue Saint-Aimé	
da site verific	Saint-Lambert-de-Lauzon (QC) G0S 2W0	
Nom et coordonnées	Marc Bisson	
de la personne	Directeur de projets, Gestion environnementale	
contact	Tél.: 581 814-5882	
COIILact	marc.bisson@wsp.com	
Périmètre	L'installation et les équipements de l'établissement visés par le	
	Règlement. Toutes les sources de GES visées dans le cadre du	
organisationnel	Règlement.	
Infrastructures		
physiques, activités	Système de captage et de destruction de gaz d'enfouissement	
et technologies		
Draint	Tel que prescrit à la figure 1 et au tableau 1 de l'annexe B du	
Projet	Règlement	
Scénario de	Tel que prescrit à la figure 1 et au tableau 1 de l'annexe B du	
référence	Règlement	
Réductions		
d'émissions	0.240 ±00. 4 =	
déclarées pour la	9 348 tCO₂éq	
période vérifiée		

Note: Le plan de vérification peut être révisé au besoin pendant les activités de vérification si toute erreur, omission ou déclaration trompeuse est trouvée importante par l'équipe de vérification. Dans un tel cas, l'échantillonnage pourrait être augmenté et le plan de vérification révisé sera communiqué au client.

DOCUMENTATION ET ENREGISTREMENTS REQUIS

Voici une liste non exhaustive des éléments de preuves et de la documentation nécessaire à la vérification :

- Chiffrier de calculs présentant l'ensemble des calculs des réductions d'émissions de GES;
- Rapport de projet incluant les annexes et présentant l'ensemble des informations requises par le Règlement;
- Preuves appuyant les données utilisées pour le calcul des réductions d'émissions de GES issues de la destruction du gaz d'enfouissement dans une torche;
 - Extractions du système de mesure en continu indiquant le débit de gaz d'enfouissement envoyé à la torchère
 - Extractions du système de mesure en continu indiquant les lectures de température et de pression du gaz d'enfouissement, si le débitmètre n'effectue pas la correction (ajustement aux conditions de référence)
 - Extractions du système de mesure en continu indiquant la teneur en méthane du gaz d'enfouissement envoyé à la torchère
 - Preuve du recouvrement des lieux d'enfouissement par une géomembrane conforme aux exigences du Règlement sur l'enfouissement et l'incinération de matières résiduelles (chapitre Q-2, r. 19), si applicable
- ▶ Preuves d'entretien, de calibration et de précision des instruments utilisés pour les mesures de données GES, débitmètres et analyseurs de CH₄;
 - o Registres d'entretien des instruments
 - Certificats d'étalonnage ou de vérification de l'exactitude du débitmètre et de l'analyseur de méthane
 - O Qualifications des personnes qui réalisent l'étalonnage
 - Manuel du fabricant indiquant les exigences d'entretien et d'étalonnage
- Preuves appuyant la quantité de matières résiduelles contenue dans le LES ainsi que la capacité du LES;
- Spécifications du dispositif de destruction;
- Preuves des mesures prises pour assurer la qualité des intrants (données brutes) utilisées pour le calcul des émissions de GES du projet et du scénario de référence ainsi que les preuves de leur application
- Preuves des mesures prises pour assurer la conservation des données en lien avec les émissions de GES calculées pour le projet et le scénario de référence

ACTIVITÉS DE VÉRIFICATION MENÉES EN DEHORS DE L'APPEL

E. Activités de vérification

Les activités de vérification seront menées par Melissa Windsor et Emmy Leduc.

ACTIVITÉ	Moyen de vérification utilisé
Vérification des méthodologies utilisées pour le calcul des réductions d'émissions de GES	Comparaison des méthodologies choisies avec les méthodologies prescrites par le Règlement
Vérification de l'exactitude du calcul des réductions d'émissions de GES	Recalcul des réductions d'émissions à partir de données brutes
Vérification des données et informations utilisées pour le calcul des réductions d'émissions de GES	Conciliation des factures, rapports d'analyse et lectures avec les données utilisées dans les calculs des réductions d'émissions de GES
Respect des exigences d'échantillonnage prescrites	Évaluation des preuves démontrant le respect des exigences du Règlement en matière d'échantillonnage
Vérification de la conformité du rapport de projet et de l'application du plan de surveillance	Comparaison du rapport de projet avec les exigences du Règlement et évaluation de l'application du plan de surveillance
Vérification des SPR considérés et des GES quantifiés	Comparaison des SPR et GES considérés avec les exigences du Règlement

ACTIVITÉS DE VÉRIFICATION LORS DE L'APPEL

F. Calendrier et détails des activités prévues pendant l'appel

L'appel sera mené par Melissa Windsor et Emmy Leduc.

	JEUDI, 8 FÉVRIER 2024		
Heure	Activité	Moyen de vérification utilisé	
13:30	Réunion d'ouverture : Introduction du personnel présent et du rôle de chacun Confirmation des objectifs des activités de vérification	N.A.	
13:45	Retour sur les changements depuis les dernières activités de vérification	Entrevue avec le personnel	
14:00	Vérification des données servant aux calculs des réductions d'émissions de GES (conformité des procédures opérationnelles et de collecte de données): • Quantité de GE captée et détruite	 Entrevue avec le personnel responsable de la collecte des données Retraçage (pas à pas) des données brutes (lectures instruments, factures, registres, etc.) Tests sur les processus de collecte et de manipulation des données brutes. 	
15:00	Vérification de l'étalonnage et de l'entretien des instruments utilisés pour les mesures des paramètres utilisés pour le calcul des réductions d'émissions de GES	 Entrevue avec le personnel responsable de la calibration des instruments Vérification de preuves d'étalonnage d'un échantillon d'instruments 	
15:10	Vérification de l'application des processus de contrôle de la qualité sur le traitement des données et calculs	– Entrevue avec le personnel responsable de la gestion de la qualité	
15:15	Vérification des méthodes de conservation et d'accès aux enregistrements importants	Entrevue avec le personnel responsable de la conservation et des accès aux enregistrements importants	
15:20	Revue des sources à déclarer	Entrevue avec le personnel responsable du rapport de projet	
15:25	Réunion de clôture Présentation des constats des activités de vérification Révision des documents supplémentaires à fournir	N.A.	

ANNEXE IV DÉCLARATION GES DU PROJET DE CAPTAGE ET DESTRUCTION DU BIOGAZ AU LES DE SAINT-LAMBERT-DE-LAUZON POUR LA PÉRIODE 2023

Système de plafonnement et d'échange de droits d'émission de gaz à effet de serre

RAPPORT DE PROJET DE CRÉDITS COMPENSATOIRES

Projets de valorisation et de destruction de méthane provenant d'un lieu d'enfouissement

Réduction d'émissions de GES au LES de Saint-Lambert-de-Lauzon LE016

Période de déclaration couverte par le rapport de projet : 2023-01-01 à 2023-12-31

WSP Canada Inc.

Date du rapport de projet : 2024-02-13

Table des matières

1.	lden	tification des personnes participant au projet	3
	1.1	Renseignements sur le promoteur du projet et les personnes ou	
		professionnels participant à la préparation ou à la réalisation du projet	3
	1.2	Renseignements sur les autres personnes participant au projet	
2.	Des	cription détaillée du projet	
3.		lifications apportées au projet depuis le rapport de projet précédent	
4.		nissibilité	
	4.1	Localisation des sites du projet	
	4.2	Conditions spécifiques au lieu d'enfouissement	
	4.3	Dispositif de destruction	
5.	Qua	ntification des réductions d'émissions de GES attribuables au projet	6
	5.1	Sources, puits et réservoirs de GES (SPR) du projet	
	5.2	Méthodes de calcul applicables à la quantification	
	5.3	Problème survenu	
	5.4	Données manquantes	7
	5.5	Réductions d'émissions de GES attribuables au projet	
6.	Surv	/eillance du projet	
	6.1	Plan de surveillance	
	6.2	Entretien, vérification et étalonnage du débitmètre et	
		de l'analyseur de méthane	9
	6.3	Dispositif de destruction ou de valorisation du méthane	
7.	Orga	anisme de vérification	
	8.1	Déclaration du promoteur du projet	11
	8.2	Déclaration du propriétaire du site du projet (si différent du promoteur)	12
	8.3	Déclaration de la personne ou de la municipalité intervenant dans la	
		valorisation du méthane	13
Anr	exes		14
	Ann	exe 1 – Analyse d'impacts environnementaux	15
		exe 2 – Aide financière	
	Ann	exe 3 – Localisation du site de projet	17
	Ann	exe 4 – Registre d'exploitation du lieu d'enfouissement	18
	Ann	exe 5 – Autorisations nécessaires à la réalisation du projet	19
	Ann	exe 6 – Facteur d'oxydation	20
	Ann	exe 7 – Rôle des personnes responsables	21
	Ann	exe 8 – Registre d'entretien	22
	Ann	exe 9 – Instruments de mesure et dispositifs	23
		exe 10 – Vérification et étalonnage des instruments de mesure	
	Ann	exe 11 – Valorisation du méthane	25
	Ann	exe 12 – Plan d'arrangement général des installations	26

1. Identification des personnes participant au projet

1.1 Renseignements sur le promoteur du projet et les personnes ou professionnels participant à la préparation ou à la réalisation du projet

Renseignements sur le promoteur du projet		
Promoteur		
Nom du promoteur	WSP Canada Inc.	
Adresse	16-1600, boul. René-Lévesque Ouest, Montréal, QC	
Numéro de téléphone	514 340-0046	
Adresse courriel	catherine.verrault@wsp.com	
Représentant du promoteur		
Nom du représentant	Marc Bisson	
Coordonnées au travail	1135, boul. Lebourgneuf, Québec, QC	
Numéro de téléphone	581 814-5882	
Adresse courriel	resse courriel marc.bisson@wsp.com	

Renseignements sur les personnes ou les professionnels participant à la préparation ou à la réalisation du projet		
Nom		
Adresse		
Numéro de téléphone		
Adresse courriel		
Résumé des tâches		
Représentant		
Nom du représentant		
Coordonnées au travail		
Numéro de téléphone		
Adresse courriel		

1.2 Renseignements sur les autres personnes participant au projet

Renseignements sur le propriétaire du site du projet (si différent du promoteur)		
Nom du propriétaire	Déjà transmis	
Adresse		
Numéro de téléphone		
Adresse courriel		
Représentant		
Nom du représentant		
Coordonnées au travail		
Numéro de téléphone		
Adresse courriel		

Renseignements sur les personnes participant à la valorisation du méthane		
Nom	Non applicable	
Adresse		
Numéro de téléphone		
Adresse courriel		
Rôle		
Représentant		
Nom du représentant		
Coordonnées au travail		
Numéro de téléphone		
Adresse courriel		

2. Description détaillée du projet

Aucune modification depuis le rapport de projet précédent

3. Modifications apportées au projet depuis le rapport de projet précédent

Aucune modification n'a été apportée au projet.

4. Admissibilité

4.1 Localisation des sites du projet

Coordonnées municipales du site de projet	Déjà transmis
Longitude et latitude de chaque site (coordonnées de positionnement global [GPS])	Déjà transmis

4.2 Conditions spécifiques au lieu d'enfouissement

Lieu d'enfouissement en exploitation		
Quantité de matière résiduelle		
reçue durant la période de	Non applicable	
déclaration visée par le rapport	поп аррисаріе	
de projet (tonnes métriques)		
Capacité autorisée (m³)		

Lieu d'enfouissement fermés		
Dates d'exploitation du lieu d'enfouissement	1974-1998	
Capacité autorisée (m³)	1 515 000 m ³	

Précisez si le lieu d'enfouissement a l'obligation, au moment du dépôt de l'avis de projet ou de l'avis de renouvellement, de capter et détruire le méthane.

Aucune obligation de capter et de détruire le biogaz car ce site a été exploité en vertu du Règlement sur les déchets solides qui n'avait aucune exigence relative aux biogaz

4.3 Dispositif de destruction

Dispositif de valorisation ou de destruction		
Indiquez le ou les dispositifs de destruction ou de valorisation utilisés dans le cadre du projet.	Torchère à flamme invisible	
Efficacité de destruction utilisée	99,5%	

La température de combustion du gaz d'enfouissement est mesurée directement à l'intérieur de la torchère au-dessus des brûleurs, à l'aide de thermocouples de type K. Les données de température sont mesurées en continu et saisies toutes les 10 minutes par un enregistreur graphique de données.

Lors de l'arrêt du système, par perte de courant ou autres, la combustion arrête. La température de combustion chute alors jusqu'à la température ambiante. Dès que la température descend à en-dessous de 260°C, le débit de méthane collecté et acheminé à la torchère est considéré nul conformément à l'article 32 du Règlement relatif aux projets de valorisation et de destruction de méthane provenant d'un lieu d'enfouissement admissibles à la délivrance de crédits compensatoires.

Lors du redémarrage des installations, la température de combustion remonte à sa valeur normale d'opération à cause la présence d'une flamme. Comme la température de combustion remonte au-dessus de 260°C, les réductions sont alors comptabilisées.

La consultation du fichier de données global en format Excel (fourni avec le présent rapport) confirme le respect de l'article 32 du Règlement relatif aux projets de valorisation et de destruction de méthane provenant d'un lieu d'enfouissement admissibles à la délivrance de crédits compensatoires.

5. Quantification des réductions d'émissions de GES attribuables au projet

5.1 Sources, puits et réservoirs de GES (SPR) du projet

Nº SPR	Description	GES visés	Scénario de référence et/ou scénario de projet	Inclus ou exclus dans les limites du projet
	Déjà transmis			

5.2 Méthodes de calcul applicables à la quantification

Équation 1 : RÉ = ÉR - ÉP				
Paramètre	Valeur			
RÉ = Réductions d'émissions de GES attribuables au projet, en tonnes métriques en équivalent CO ₂	9 348			
ÉR = Émissions de GES du scénario de référence, calculées selon l'équation 2 de l'article 20, en tonnes métriques en équivalent CO ₂	9 348			
ÉP = Émissions de GES du scénario de projet attribuables à la consommation de combustible fossiles, calculées selon l'équation 9 de l'article 22, en tonnes métriques en équivalent CO ₂	0			
Équation 3 : $OX = \frac{(0 \% \times S_{ZC}) + (10 \% \times S_{ZNC})}{S_{ZC} + S_{ZNC}}$				
Paramètre	Valeur			
OX = Facteur d'oxydation utilisé	10			
S _{ZNC} = Superficie de la zone en exploitation du lieu d'enfouissement non couverte par la géomembrane du recouvrement final au début de la période de déclaration (m²)				
S _{ZC} = Superficie de la zone du lieu d'enfouissement remplie et couverte par une géomembrane (m²)	0			
Équation 8 : $VGE_{i,t} = VGE_{noncorrigé} \times \frac{293,15}{T} \times \frac{P}{101,325}$				
Les valeurs de débit ont été corrigées selon l'équation 8, compte tenu que les mesures du débitmètre sont référencées à 0°C, 101,3 kPa.				
Équation 9 : $ \dot{E}P = \sum_{f=1}^{n} \left[CF_f \times \left[(F\dot{E}_{CO2,f} \times 10^{-3}) + (F\dot{E}_{CH4,f} \times PRP_{CH4} \times 10^{-6}) + (F\dot{E}_{N20,f} \times PRP_{N20} \times 10^{-6}) \right] \right] $				

0

ÉP = Émissions de GES du scénario de projet

en tonnes métriques en équivalent CO₂

attribuables à la consommation de combustible fossiles,

f = Type de combustible fossile	Propane
n = Nombre de types de combustible fossiles	1
CF _f = Quantité totale de combustible fossile <i>f</i> consommée	Négligeable (moins de 606 L depuis 2018)
$F\dot{E}_{CO2,f}$ = Facteur d'émission de CO_2 du combustible fossile	1510 g/L
FÉ _{CH4,f} = Facteur d'émission de CH ₄ du combustible fossile <i>f</i>	0,024 g/L
PRP _{CH4} = Potentiel de réchauffement planétaire du CH ₄	25
$F\dot{E}_{N2O,f}$ = Facteur d'émission de N_2O du combustible fossile f	0,108 g/l
PRP _{N2O} = Potentiel de réchauffement planétaire du N ₂ O	298

5.3 Problème survenu

Aucun problème n'est survenu en 2023.

5.4 Données manquantes

Période de données manquantes	Types de données manquantes	Méthode de remplacement utilisée	Valeur utilisée
2023-03-12-02:10 à 2022-03-12-02:50	•		
2023-06-02-13:50 à 2023-06-02-15:10		Aucune	0
2023-07-19-09:50 à 2023-07-19-13:50	Débit, concentration de		
2023-07-31-08:20 à 2023-07-31-08:50	méthane, température de		
2023-08-26-02:10	combustion		
2023-09-29-08:10			
2023-01-01-00:00		Aucune	
2023-04-14-09:40 à 2023-04-17-15:00			0
2023-05-23-08:50 à 2023-05-23-09:00			
2023-06-02-13:40			
2023-06-08-00:00	Débit,		
2023-07-03-11:40	concentration de méthane		
2023-07-11-00:00			
2023-07-19-09:00 à 2023-07-19-09:10			
2023-07-19-09:40			
2023-07-31-08:00 à 2023-07-31-08:10			

2023-07-31-09:50 2023-08-26-01:50 à 2023-08-26-02:00 2023-09-29-08:00 2023-10-17-12:00 à 2023-10-17-13:20 2023-10-17-13:40 à 2023-10-17-14:00	Débit, concentration de méthane	Aucune	0
2023-10-31-00:00 2023-11-23-00:00			
2023-02-28-00:00			
2023-05-23-09:10			
2023-06-02-15:20 à 2023-06-02-15:30		Aucune	
2023-07-05-07:10			
2023-07-19-09:20 à 2023-07-19-09:30	Tamanénahuna da		
2023-07-19-14:00 à 2023-07-19-14:10	Température de combustion		0
2023-07-31-09:00 à 2023-07-31-09:10			
2023-07-31-09:30 à 2023-07-31-09:40			
2023-08-26-02:20			
2023-09-29-08:20 à 2023-09-29-08:30			

5.5 Réductions d'émissions de GES attribuables au projet

Numéro de la	Dates de la période de déclaration			Quantité totale de
période de déclaration	Date de début (aaaa-mm-jj)	Date de fin (aaaa-mm-jj)	Milloeimo!	d'émissions de GES déclarée (tm éq. CO ₂)
2	2023-01-01	2023-12-31	2023	9 348
	_			Total : 9 348

Le millésime est l'année civile au cours de laquelle les réductions d'émissions de GES ont eu lieu et sont quantifiées. Si une période de déclaration chevauche deux années civiles, les réductions d'émissions de GES doivent être quantifiées séparément pour chaque millésime.

6. Surveillance du projet

6.1 Plan de surveillance

Déjà transmis

6.2 Entretien, vérification et étalonnage du débitmètre et de l'analyseur de méthane

Débitmètre		
Date de la vérification	31 octobre 2023	
Compagnie responsable de la vérification ou de l'étalonnage	Consulair	
$Erreur \ relative \ (\%) = \frac{M_{inst \ projet} - M_{inst \ référence}}{M_{inst \ projet}} \times 100$	0,37%	
M _{inst projet} = Mesure des instruments du projet, soit le débit		
volumique du gaz d'enfouissement mesuré par le	164,00 m ³ /h	
débitmètre du projet		
M _{inst référence} = Mesure des instruments de référence, soit le		
débit volumique du gaz d'enfouissement mesuré par un	164,61 m ³ /h	
débitmètre de référence ou un tube de Pitot de type L		
Si un étalonnage était requis à la suite de la vérification,		
veuillez l'indiquer et préciser la date et le nom de la	Non requis	
compagnie responsable ayant effectué ces travaux.		

Analyseur de CH₄			
Date de la vérification ou de l'étalonnage	17 octobre 2023		
Compagnie responsable de la vérification	Demesa inc.		
$Erreur \ relative \ (\%) = \frac{M_{inst \ projet} - M_{inst \ référence}}{M_{inst \ projet}} \times 100$	2,9%		
M _{inst projet} = Mesure des instruments du projet, soit la concentration de CH ₄ du gaz d'enfouissement mesurée par l'analyseur de CH ₄ du projet	48,6% vol		
M _{inst référence} = Mesure des instruments de référence, soit la concentration de CH ₄ du gaz d'enfouissement mesurée par un analyseur de CH ₄ de référence	50,0% vol		
Si un étalonnage a été fait, veuillez l'indiquer et préciser la date et le nom de la compagnie responsable ayant effectué ces travaux.	17 octobre 2023 Demesa inc.		

6.3 Dispositif de destruction ou de valorisation du méthane

Dispositif de destruction autre qu'une torche	
Précisez le type de dispositif de suivi du dispositif de	Non applicable
destruction.	тчоп аррисаые
Décrivez comment le dispositif de suivi permet de vérifier	
l'état de fonctionnement du dispositif de valorisation ou de	
destruction.	

7. Organisme de vérification

Organisme de vérification		
Nom de l'organisme de vérification	Enviro-Accès	
Nom de l'organisme d'accréditation	Conseil canadien des normes (CCN)	
Date de la visite du site du projet, le cas échéant	2023-03-08	

Déclarations

8.1 Déclaration du promoteur du projet

En tant que promoteur du projet de crédits compensatoires susmentionné, ou que représentant dudit promoteur exerçant mes activités au sein de l'entité nommée ci-dessus, je déclare que :

- les réductions d'émissions de GES visées par le rapport de projet n'ont pas déjà fait l'objet de la délivrance de crédits compensatoires en vertu du Règlement concernant le système de plafonnement et d'échange de droits d'émission de gaz à effet de serre, ou de crédits en vertu d'un autre programme de compensation d'émissions de GES, et que ces réductions d'émissions ne feront pas l'objet de la délivrance de crédits en vertu d'un tel programme;
- le projet est réalisé conformément à toutes les exigences qui lui sont applicables selon le type de projet et le lieu où il est réalisé;
- le projet est réalisé conformément au Règlement et que les documents et renseignements fournis dans le présent rapport de projet sont complets et exacts.

WSP Canada Inc.

Nom du promoteur (dénomination sociale dans le cas d'une personne morale ou nom et prénom dans le cas d'une personne physique)

Signature du promoteur (dans le cas d'une personne physique) ou du représentant du promoteur (dans le cas d'une personne morale)

Le cas échéant,

Marc Bisson

Nom et prénom du représentant du promoteur

2024-02-13

Date de signature (aaaa-mm-jj)

8.2 Déclaration du propriétaire du site du projet (si différent du promoteur)

En tant propriétaire du site du présent projet de crédits compensatoire **Réduction** d'émissions de GES au LES de Saint-Lambert-de-Lauzon LE016 du promoteur WSP Canada Inc., je déclare que j'ai autorisé la réalisation du projet par le promoteur et que je m'engage à ne pas faire, à l'égard des réductions d'émissions de GES visées par le rapport de projet, de demande de délivrance de crédits compensatoires en vertu du Règlement concernant le système de plafonnement et d'échange de droits d'émission de gaz à effet de serre ou de demande de délivrance de crédits en vertu d'un autre programme de compensation d'émissions de GES.

Régie intermunicipale des déchets des Chutes-de-la-Chaudière

Nom du propriétaire (dénomination sociale dans le cas d'une personne morale ou nom et prénom dans le cas d'une personne physique)

Signature du propriétaire (dans le cas d'une personne physique) ou du représentant du propriétaire (dans le cas d'une personne morale)

2024-01-23

Date de signature (aaaa-mm-jj)

Le cas échéant,

Louis Fleury, ing.

Nom et prénom du représentant du propriétaire

8.3	Déclaration de la personne valorisation du méthane	ou	de	la	municipalité	intervenant	dans	la
Non	applicable							

Annexes

Annexe 1 – Analyse d'impacts environnementaux
Non applicable
Gabarit de rapport de projet de valorisation et de destruction de méthane provenant d'un lieu d'enfouissement

Annexe 2 – Aide financière
Non applicable
Gabarit de rapport de projet de valorisation et de destruction de méthane provenant d'un lieu

Annexe 3 – Localisation du site de projet
Déjà fourni
Gabarit de rapport de projet de valorisation et de destruction de méthane provenant d'un lieu d'enfouissement

v.1 – 2021-07

Annexe 4 – Registre d'exploitation du lieu d'enfouissement
Déjà fourni
Gabarit de rapport de projet de valorisation et de destruction de méthane provenant d'un lieu

Annexe 5 – Autorisations necessaires a la realisation du projet
Déjà fourni
Gabarit de rapport de projet de valorisation et de destruction de méthane provenant d'un lieu

Le facteur d'oxydation a été fixé à 10% compte tenu qu'il n'y a pas d'évidence que le recouvrement final du LES correspond aux exigences du REIMR

Annexe 6 – Facteur d'oxydation

		 	onsables		
ejà f	ourni				

Annexe 8 – Registre d'entretien									
Gabarit de rapport de projet de valorisation et de destruction de méthane provenant d'un lieu d'enfouissement									

PROGRAMME D'ENTRETIEN DES EQUIPEMENTS 2025												
Composante	Sous-composante	Action	Fréquence	<u>J</u>	an.	Commentaire	<u>F</u>	<u>év.</u>	Commentaire	<u>M</u> :	ars	Commentaire
Réseau de captage	du biogaz	Vérification du libre écoulement du biogaz dans le réseau et de l'absence d'accumulation de liquide dans les conduites, ajustement des puits	Aux 2 à 4 semaines	4	AL'	OK	22	AL'	OK	27	AL'	ОК
Pompes submersib	oles dans trappes à	Vérification de la fréquence et durée de pompage	Aux 2 à 4 semaines	4	AL'	OK	22	AL'	OK	27	AL'	OK
Réservoir à condensat		Vérification du niveau d'eau et vidange au besoin	Au 6 mois	4	AL'	OK	22	AL'	OK	27	AL'	OK
Station de pompag	je du biogaz										1	
	Séparateur de gouttelettes	Inspection et vidange au besoin	Aux 2 à 4 semaines	4	AL'	OK	22	AL'	OK	27	AL'	OK
	Moteur – niveau de bruit	Vérification	Aux 2 à 4 semaines	4	AL'	OK	22	AL'	OK	27	AL'	OK
	Moteur - valve	Vérification et nettoyage	Au besoin	4	AL'	OK	22	AL'	OK	27	AL'	OK
	Soufflante	Graissage	Aux 4 mois	4	AL'	OK	22	AL'	OK	27	AL'	OK
	Alignement	Tension courroles	Au besoin	4	AL'	OK	22	AL'	OK	27	AL'	OK
Torchère		Inspection visuelle	Aux 2 à 4 semaines	4	AL'	OK	22	AL'	OK	27	AL'	OK
	Anti-retour de flamme	Nettoyage	Annuelle	4	AL'	OK	22	AL'	OK	27	AL'	OK
	Thermocouples	Vérification et remplacement au besoin	Aux six mois	4	AL'	OK	22	AL'	OK	27	AL'	OK
	Détecteur de flamme	Vérification, nettoyage	Si perte de charge importante	4	AL'	OK	22	AL'	OK	27	AL'	OK
	Veilleuse	Vérification, nettoyage	Mensuelle	4	AL'	OK	22	AL'	OK	27	AL'	OK
	Isolation de la cheminée	Vérification de l'état de l'isolant	Annuelle	4	AL'	OK	22	AL'	OK	27	AL'	OK
	Électrodes d'allumage	Vérification	Mensuelle	4	AL'	OK	22	AL'	OK	27	AL'	OK
	Lampe UV	Remplacement	Selon besoin	4	AL'	OK	22	AL'	OK	27	AL'	OK
Instruments de me	sure											
	Analyseur de méthane	Calibrage/vérification	Mensuel / à l'interne	4	AL'	OK	22	AL'	OK	27	AL'	OK
			Annuel / par le fournisseur	4	AL'	OK	22	AL'	OK	27	AL'	OK
	Indicateurs de pression	Vérification	Au 6 mois	4	AL'	OK	22	AL'	OK	27	AL'	OK
	Débitmètre	Nettoyage / Inspection	Annuelle	4	AL'	OK	22	AL'	OK	27	AL'	OK
Autres												
	Vannes	Inspection	Mensuelle	4	AL'	OK	22	AL'	OK	27	AL'	OK

_													
Composante	Sous-composante	Action	Fréquence	<u>A</u>	vr.	Commentaire	N	<u>lai</u>	Commentaire	<u>J</u> ı	<u>uin</u>	Commentaire	
Réseau de captage	e du biogaz	Vérification du libre écoulement du biogaz dans le réseau et de l'absence d'accumulation de liquide dans les conduites, ajustement des puits	Aux 2 à 4 semaines	18	AL'	ОК	23	AL'	OK	20	AL'	ОК	
1		Vérification de la fréquence et durée de pompage	Aux 2 à 4 semaines	18	AL'	OK	23	AL'	OK	20	AL'	OK	
Réservoir à condensat		Vérification du niveau d'eau et pompage au besoin	Au 6 mois	18	AL'	OK	23	AL'	OK	20	AL'	OK	
Station de pompaç	ge du biogaz												
	Séparateur de gouttelettes	Inspection et vidange au besoin	Aux 2 à 4 semaines	18	AL'	OK	23	AL'	OK	20	AL'	OK	
	Moteur – niveau de bruit	Vérification	Aux 2 à 4 semaines	18	AL'	OK	23	AL'	OK	20	AL'	OK	
	Moteur - valve	Vérification et nettoyage	Au besoin	18	AL'	OK	23	AL'	OK	20	AL'	OK	
	Soufflante	Graissage	Aux 4 mois	18	AL'	OK	23	AL'	OK	20	AL'	OK	
	Alignement	Tension courroies	Au besoin	18	AL'	OK	23	AL'	OK	20	AL'	OK	
Torchère	1	Inspection visuelle	Aux 2 à 4 semaines	18	AL'	OK	23	AL'	OK	20	AL'	OK	
	Anti-retour de flamme	Nettoyage	Annuelle	18	AL'	OK	23	AL'	OK	20	AL'	OK	
	Thermocouples	Vérification et remplacement au besoin	Aux six mois	18	AL'	OK	23	AL'	OK	20	AL'	OK	
	Détecteur de flamme	Vérification, nettoyage	Si perte de charge importante	18	AL'	OK	23	AL'	OK	20	AL'	OK	
	Veilleuse	Vérification, nettoyage	Mensuelle	18	AL'	OK	23	AL'	OK	20	AL'	OK	
	Isolation de la cheminée	Vérification de l'état de l'isolant	Annuelle	18	AL'	OK	23	AL'	OK	20	AL'	OK	
	Électrodes d'allumage	Vérification	Mensuelle	18	AL'	OK	23	AL'	OK	20	AL'	OK	
	Lampe UV	Remplacement	Selon besoin	18	AL'	OK	23	AL'	OK	20	AL'	OK	
Instruments de me	sure				L L						l L		
	Analyseur de méthane	Calibrage/vérification	Mensuel / à l'interne	18	AL'	OK	23	AL'	OK	20	AL'	OK	
			Annuel / par le fournisseur	18	AL'	OK	23	AL'	OK	20	AL'	ОК	
	Indicateurs de pression	Vérification	Au 6 mois	18	AL'	OK	23	AL'	OK	20	AL'	OK	
	Débitmètre	Nettoyage / Inspection	Annuelle	18	AL'	OK	23	AL'	OK	20	AL'	OK	
Autres					! 		1	1			 		
	Vannes	Inspection	Mensuelle	18	AL'	OK	23	AL'	OK	20	AL'	OK	

PROGRAMME D'ENTRETIEN DES EQUIPEMENTS 2025												
Composante	Sous-composante	Action	Fréquence	<u>J</u>	<u>ul.</u>	Commentaire	<u>A</u>	<u>oût</u>	Commentaire	<u>Se</u>	ept.	Commentaire
Réseau de captage	e du biogaz	Vérification du libre écoulement du biogaz dans le réseau et de l'absence d'accumulation de liquide dans les conduites, ajustement des puits	Aux 2 à 4 semaines	3	AL'	OK	21	AL'	OK	7	AL'	ОК
Pompes submersit condensat	oles dans trappes à	Vérification de la fréquence et durée de pompage	Aux 2 à 4 semaines	3	AL'	OK	21	AL'	OK	7	AL'	OK
Réservoir à conder	nsat	Vérification du niveau d'eau et pompage au besoin	Au 6 mois	3	AL'	OK	21	AL'	OK	7	AL'	OK
Station de pompag	je du biogaz											
	Séparateur de gouttelettes	Inspection et vidange au besoin	Aux 2 à 4 semaines	3	AL'	OK	21	AL'	OK	7	AL'	OK
	Moteur – niveau de bruit	Vérification	Aux 2 à 4 semaines	3	AL'	OK	21	AL'	OK	7	AL'	OK
	Moteur - valve	Vérification et nettoyage	Au besoin	3	AL'	OK	21	AL'	OK	7	AL'	OK
	Soufflante	Graissage	Aux 4 mois	3	AL'	OK	21	AL'	OK	7	AL'	OK
	Alignement	Tension courroles	Au besoin	3	AL'	OK	21	AL'	OK	7	AL'	OK
Torchère		Inspection visuelle	Aux 2 à 4 semaines	3	AL'	OK	21	AL'	OK	7	AL'	OK
	Anti-retour de flamme	Nettoyage	Annuelle	3	AL'	OK	21	AL'	OK	7	AL'	OK
	Thermocouples	Vérification et remplacement au besoin	Aux six mois	3	AL'	OK	21	AL'	OK	7	AL'	OK
	Détecteur de flamme	Vérification, nettoyage	Si perte de charge importante	3	AL'	OK	21	AL'	OK	7	AL'	OK
	Veilleuse	Vérification, nettoyage	Mensuelle	3	AL'	OK	21	AL'	OK	7	AL'	OK
	Isolation de la cheminée	Vérification de l'état de l'isolant	Annuelle	3	AL'	OK	21	AL'	OK	7	AL'	OK
	Électrodes d'allumage	Vérification	Mensuelle	3	AL'	OK	21	AL'	OK	7	AL'	OK
	Lampe UV	Remplacement	Selon besoin	3	AL'	OK	21	AL'	OK	7	AL'	OK
Instruments de me	sure				1						1	
	Analyseur de méthane	Calibrage/vérification	Mensuel / à l'interne	3	AL'	OK	21	AL'	OK	7	AL'	OK
			Annuel / par le fournisseur	3	AL'	ОК	21	AL'	OK	7	AL'	OK
	Indicateurs de pression	Vérification	Au 6 mois	3	AL'	OK	21	AL'	OK	7	AL'	OK
	Débitmètre	Nettoyage / Inspection	Annuelle	3	AL'	OK	21	AL'	OK	7	AL'	OK
Autres					1 1			1				
	Vannes	Inspection	Mensuelle	3	AL'	OK	21	AL'	OK	7	AL'	OK

Composante Sous-composante Action Fréquence Oct. Commentaire Nov. Commentaire Incommentaire Réseau de captage du biogaz Vérification du libure écoulement du biogaz dans le réseau et de l'absence d'accumulation de liquide dans les conduites, ajustement des puits 11 AL' OK 16 AL' OK 20 Pompes submersibles dans trappes à condensat Vérification de la fréquence et durée de pompage Aux 2 à 4 semaines 11 AL' OK 16 AL' OK 20 Réservoir à condensat Vérification du niveau d'eau et pompage au besoin Au 6 mois 11 AL' OK 16 AL' OK 20 Station de pompage du biogaz Séparateur de gouttelettes Inspection et vidange au besoin Aux 2 à 4 semaines 11 AL' OK 16 AL' OK 20 Station de pompage du biogaz Inspection et vidange au besoin Aux 2 à 4 semaines 11 AL' OK 16 AL' OK 20 Séparateur de gouttelettes Impection vieau de bruit Vérification et nettoy	20 AL' OK 20 AL' OK 20 AL' OK
biogaz dans le réseau et de l'absence d'accumulation de liquide dans les conduites, ajustement des puits Pompes submersibles dans trappes à condensat Pompage Vérification de la fréquence et durée de pompage Vérification du niveau d'eau et pompage au besoin Station de pompage du biogaz Séparateur de gouttelettes Inspection et vidange au besoin Moteur – niveau de bruit Vérification Aux 2 à 4 semaines Au 6 mois 11 AL' OK 16 AL' OK 20 Station de pompage du biogaz III AL' OK 16 AL' OK 20 Station de pompage du biogaz III AL' OK 16 AL' OK 20 Separateur de gouttelettes Inspection et vidange au besoin Aux 2 à 4 semaines 11 AL' OK 16 AL' OK 20 Separateur ve gouttelettes Inspection et vidange au besoin Aux 2 à 4 semaines 11 AL' OK 16 AL' OK 20 Aux 2 à 4 semaines 11 AL' OK 16 AL' OK 20 Aux 2 à 4 semaines 11 AL' OK 16 AL' OK 20 Aux 2 à 4 semaines 11 AL' OK 16 AL' OK 20 Aux 2 à 4 semaines 11 AL' OK 16 AL' OK 20 Aux 2 à 4 semaines 11 AL' OK 16 AL' OK 20 Aux 4 mois 11 AL' OK 16 AL' OK 20 Aux 4 mois 11 AL' OK 16 AL' OK 20 Aux 4 mois 11 AL' OK 20 Aux 4 mois 11 AL' OK 16 AL' OK 20 Aux 4 mois 11 AL' OK 16 AL' OK 20 Aux 4 mois Aux 4 mois 11 AL' OK 16 AL' OK 20 Aux 4 mois Aux 4 mois 11 AL' OK 16 AL' OK 20 Aux 4 mois Aux 4 mo	20 AL' OK 20 AL' OK 20 AL' OK
Réservoir à condensat pompage Au 6 mois 11 AL' OK 16 AL' OK 20	20 AL' OK
Station de pompage du biogaz Séparateur de gouttelettes Inspection et vidange au besoin Aux 2 à 4 semaines 11 AL' OK 16 AL' OK 20 Moteur – niveau de bruit Vérification Aux 2 à 4 semaines 11 AL' OK 16 AL' OK 20 Moteur - valve Vérification et nettoyage Au besoin 11 AL' OK 16 AL' OK 20 Soufflante Graissage Aux 4 mois 11 AL' OK 16 AL' OK 20 Alignement Tension courroies Au besoin 11 AL' OK 16 AL' OK 20 Torchère Inspection visuelle Aux 2 à 4 semaines 11 AL' OK 16 AL' OK 20 Anti-retour de flamme Nettoyage Annuelle 11 AL' OK 16 AL' OK 20 Thermosouries Annuelle 11 AL' OK 16 AL' OK 20 Anti-retour de flamme Nettoyage Annuelle 11 AL' OK 16 AL' OK 20	0 AL' OK
Séparateur de gouttelettes Inspection et vidange au besoin Aux 2 à 4 semaines Moteur – niveau de bruit Vérification Aux 2 à 4 semaines 11 AL' OK 16 AL' OK 20 Moteur - valve Vérification et nettoyage Au besoin 11 AL' OK 16 AL' OK 20 Soufflante Graissage Aux 4 mois 11 AL' OK 16 AL' OK 20 Alignement Tension courroies Au besoin 11 AL' OK 16 AL' OK 20 Torchère Inspection visuelle Aux 2 à 4 semaines 11 AL' OK 16 AL' OK 20 Anti-retour de flamme Nettoyage Annuelle 11 AL' OK 16 AL' OK 20	
Moteur – niveau de bruit Vérification Aux 2 à 4 semaines 11 AL' OK 16 AL' OK 20 Moteur – valve Vérification et nettoyage Au besoin 11 AL' OK 16 AL' OK 20 Soufflante Graissage Aux 4 mois 11 AL' OK 16 AL' OK 20 Alignement Tension courroies Au besoin 11 AL' OK 16 AL' OK 20 Torchère Inspection visuelle Aux 2 à 4 semaines 11 AL' OK 16 AL' OK 20 Anti-retour de flamme Nettoyage Annuelle 11 AL' OK 16 AL' OK 20 Thermographica Nettoyage Annuelle 11 AL' OK 16 AL' OK 20	
Moteur - valve Vérification et nettoyage Au besoin 11 AL' OK 16 AL' OK 20 Soufflante Graissage Aux 4 mois 11 AL' OK 16 AL' OK 20 Alignement Tension courroies Au besoin 11 AL' OK 16 AL' OK 20 Torchère Inspection visuelle Aux 2 à 4 semaines 11 AL' OK 16 AL' OK 20 Anti-retour de flamme Nettoyage Annuelle 11 AL' OK 16 AL' OK 20	0 AL' OK
Soufflante Graissage Aux 4 mois 11 AL' OK 16 AL' OK 20 Alignement Tension courroies Au besoin 11 AL' OK 16 AL' OK 20 Torchère Inspection visuelle Aux 2 à 4 semaines 11 AL' OK 16 AL' OK 20 Anti-retour de flamme Nettoyage Annuelle 11 AL' OK 16 AL' OK 20	
Alignement Tension courroies Au besoin 11 AL' OK 16 AL' OK 20 Torchère Inspection visuelle Aux 2 à 4 semaines 11 AL' OK 16 AL' OK 20 Anti-retour de flamme Nettoyage Annuelle 11 AL' OK 16 AL' OK 20	OK OK
Torchère Inspection visuelle Aux 2 à 4 semaines 11 AL' OK 16 AL' OK 20 Anti-retour de flamme Nettoyage Annuelle 11 AL' OK 16 AL' OK 20 Thermosourles Vérification et remplacement ou bessir Aux six mais	0 AL' OK
Anti-retour de flamme Nettoyage Annuelle 11 AL' OK 16 AL' OK 20 Thermosouples Vérification et remplacement ou becein Aux six maio	0 AL' OK
Thermoscuples Vérification et remplacement ou becein Aux eix mein	0 AL' OK
Thermocouples Vérification et remplacement au besoin Aux six mois 11 AL OK 16 AL OK 20	0 AL' OK
II AL OK 10 AL OK 20	O AL' OK
Détecteur de flamme Vérification, nettoyage Si perte de charge importante 11 AL' OK 16 AL' OK 20	OK OK
VeilleuseVérification, nettoyageMensuelle11AL'OK16AL'OK20	0 AL' OK
Isolation de la cheminée Vérification de l'état de l'isolant Annuelle 11 AL' OK 16 AL' OK 20	0 AL' OK
Électrodes d'allumage Vérification Mensuelle 11 AL' OK 16 AL' OK 20	0 AL' OK
Lampe UV Remplacement Selon besoin 11 AL' OK 16 AL' OK 20	0 AL' OK
Instruments de mesure	
Analyseur de méthane Calibrage/vérification Mensuel / à l'interne 11 AL' OK 16 AL' OK 20	0 AL' OK
Annuel / par le fournisseur 11 AL' OK 16 AL' OK 20	0 AL' OK
Indicateurs de pression Vérification Au 6 mois 11 AL' OK 16 AL' OK 20	0 AL' OK
Débitmètre Nettoyage / Inspection Annuelle 11 AL' OK 16 AL' OK 20	O AL' OK
Autres	
Vannes Inspection Mensuelle 11 AL' OK 16 AL' OK 20	OK OK

Annexe 9 – Instruments de mesure et dispositifs
Déjà fourni
Gabarit de rapport de projet de valorisation et de destruction de méthane provenant d'un lieu d'enfouissement

Annexe 10 – Verification et étalonnage des instruments de mesure
Gabarit de rapport de projet de valorisation et de destruction de méthane provenant d'un lieu

RAPPORT DE MESURES DE VITESSE ET DE TEMPÉRATURE DES BIOGAZ AFIN D'ÉVALUER LE DÉBIT DE GAZ DE LA CONDUITE D'ENTRÉE DES GAZ DE LA TORCHÈRE

WSP Canada À l'attention de M. MARC BISSON Directeur de projets, Gestion environnementale

NOTRE RÉFÉRENCE: #23-7488

consul-air.com

Québec

2022, rue Lavoisier, suite 125 Québec (Québec) G1N 4L5

TÉLÉPHONE - 418 650.5960 TÉLÉCOPIEUR - 418 704.2221 SANS FRAIS - 1 866 6969.AIR (247)

Repentigny

600, rue Leclerc, suite 101 Repentigny (Québec) J6A 2E5

TÉLÉPHONE - 450 654.8000 TÉLÉCOPIEUR - 450 654.6730

Longueuil

992, rue Joliette, suite 102 Longueuil (Québec) J4K 4V9

TÉLÉPHONE - 450 332.4322

RÉDIGÉ PAR

Julie Vaillancourt, ing. (111720), M.Sc.A., Responsable des comptes majeurs

Julie Vaillament

tascal Vallying

VÉRIFIÉ PAR

Pascal Waltzing, chimiste Chargé de projets

Québec, janvier 2024

TABLE DES MATIÈRES

1	Intro	oduction	. 1
	1.1	Objectifs du programme	. 1
	1.2	Ampleur du programme	. 1
2	Inte	rvenants du projet	. 1
3	Info	rmations & localisation des sites de mesures	. 2
	3.1	Lieux des travaux	. 2
4	Éch	antillonnage	. 3
	4.1	Conditions d'exploitation et d'opération des procédés (sources)	
	4.2	Caractéristiques des points d'émission	
	4.3	Méthodes d'échantillonnage	. 4
	4.4	Horaire des essais	. 5
5	Prog	gramme AQ/CQ	. 6
	5.1 5.1.2 5.1.3 5.1.4	2 Méthodes d'échantillonnage	6 6
	5.2 5.2.2	AQ/CQ lors de l'échantillonnage	
	5.3 5.3.1	AQ/CQ postéchantillonnage 1 AQ/CQ lors de la rédaction du rapport d'échantillonnage	
6	Rés	ultats	. 8
	6.1	LET Torchère – Gaspé	. 8
	6.2	LET Torchère – Matane	. 9
	6.3	LET Torchère - La Rouge	10
	6.4	LES Torchère - La Rouge	11
	6.5	Station Transfert Torchère - La Rouge	12
	6.6	Torchère – Mont-Laurier	13
	6.7	Torchère – Saint-Flavien	14
	6.8	Torchère – Saint-Lambert-de-Lauzon	15
	6.9	Torchère – Val-d'Or	16
7	Ana	lyse des résultats	17
	7.1	LET de Gaspé (Qc)	17

g	Réfe	érences	10
8	Con	clusion	18
	7.7	LET de Val-D'Or (Qc)	17
	7.6	LES de Saint-Lambert-de-Lauzon (Qc)	17
	7.5	LET de Saint-Flavien (Qc)	17
	7.4	LET de Mont-Laurier (Qc)	17
	7.3	LES et LET de La Rouge (Qc)	17
	7.2	LET de Matane (Qc)	17

LISTE DES TABLEAUX

Tableau 1-1 – Sources et paramètres à mesurer	1
Tableau 2-1 – Description du client et des contacts	2
Tableau 2-2 – Équipe de Consulair impliquée dans le projet	2
Tableau 4-1 – Caractéristiques du lieu d'échantillonnage des points d'émission	3
Tableau 4-2 – Méthodes d'échantillonnage	4
Tableau 4-3 – Horaire des essais – Torchère - Gaspé	5
Tableau 4-4 – Horaire des essais – LET Torchère - La Rouge	5
Tableau 4-5 – Horaire des essais – LES Torchère - La Rouge	5
Tableau 4-6 – Horaire des essais – Station Transfert Torchère - La Rouge	5
Tableau 4-7 – Horaire des essais – Torchère – Mont-Laurier	5
Tableau 4-8 – Horaire des essais – Torchère – Saint-Flavien	5
Tableau 4-9 – Horaire des essais – Torchère – Saint-Lambert-de-Lauzon	5
Tableau 4-10 – Horaire des essais – Torchère – Matane	6
Tableau 4-11 – Horaire des essais – Torchère – Val-d'Or	6
Tableau 6-1 – Gaspé – Conduite de biogaz & débits des gaz	8
Tableau 6-2 – Matane – Conduite de biogaz & débits des gaz	9
Tableau 6-3 – LET La Rouge – Conduite de biogaz & débits des gaz	10
Tableau 6-4 – LES La Rouge – Conduite de biogaz & débits des gaz	11
Tableau 6-5 – Station Transfert Torchère - La Rouge – Conduite de biogaz & débits des gaz	12
Tableau 6-6 – Mont-Laurier – Conduite de biogaz & débits des gaz	13
Tableau 6-7 – Saint-Flavien – Conduite de biogaz & débits des gaz	14
Tableau 6-8 – Saint-Lambert-de-Lauzon – Conduite de biogaz & débits des gaz	15
Tableau 6-9 – Val-D'Or – Conduite de biogaz & débits des gaz	16
LISTE DES FIGURES	
Figure 4-1 – Critères de placement du lieu d'échantillonnage	4

LISTE DES ANNEXES

Annexe 1 – Données compilées par ordinateur

Annexe 2 - Certificats d'étalonnages

Annexe 3 – Feuilles de chantier

wsp

GLOSSAIRE

Conditions de référence ou « R »

Conditions de référence spécifiées dans la législation québécoise.

Déviation

Une déviation correspond au fait de ne pas suivre la méthode d'échantillonnage pour diverses raisons.

Une modification à une méthode d'échantillonnage peut être nécessaire avant la réalisation de l'échantillonnage, à cause des particularités du point d'émission (par exemple, l'impossibilité d'installer l'équipement d'échantillonnage correctement, la température trop élevée des gaz ou la vitesse trop faible des gaz). Dans un tel cas, une autorisation préalable du Ministère ou de l'autorité concernée est nécessaire.

Une déviation peut également se produire lors de l'échantillonnage (par exemple, le prélèvement d'un volume de gaz inférieur au volume minimal exigé dans la méthode). Dans un tel cas, elle doit être consignée et expliquée clairement sur les feuilles de terrain et incluse dans le rapport.

Essai

Prélèvement d'un échantillon dont la durée dépend de la méthode d'échantillonnage.

Exploitant de la source

Responsable de l'exploitation de la source d'émission visée par la campagne d'échantillonnage.

Lieu d'échantillonnage

Lieu du point d'émission où les prélèvements sont effectués. Les méthodes d'échantillonnage comportent des instructions pour le choix de ce dernier.

Ministère ou MELCCFP

Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs.

Personnel qualifié

Personnel possédant la formation et l'expérience mentionnées dans les Lignes directrices concernant les

prélèvements des émissions atmosphériques en provenance de sources fixes, DR-12-AIR-01, disponible

sur le site Internet du CEAEQ.

Prélèvement isocinétique

Un prélèvement est isocinétique lorsque la vitesse linéaire du gaz entrant dans la buse de prélèvement

est égale à celle du courant gazeux non perturbé au point d'échantillonnage.

Préleveur

Équipe qui effectue les prélèvements lors de la campagne d'échantillonnage. Cette équipe peut

notamment provenir d'un organisme de réglementation ou d'une firme d'échantillonnage externe ou

appartenir à l'exploitant de la source d'émission visée par la campagne d'échantillonnage.

Point d'émission

Cheminée, évent, ventilateur ou toute autre ouverture pouvant générer des émissions dans l'atmosphère.

Une campagne d'échantillonnage peut comporter plusieurs points d'émission.

Site d'échantillonnage

Lieu de réalisation de la campagne d'échantillonnage (usine et sa municipalité).

Source fixe d'émission

Activité, équipement ou procédé, autre qu'un véhicule mobile, un aéronef, un navire ou une locomotive,

générant des émissions. Une source fixe peut avoir un ou plusieurs points d'émission.

Vérification de la conformité environnementale

Vérification d'une exigence réglementaire ou inscrite dans une autorisation délivrée en vertu de la LQE.

Rapport de caractérisation des émissions atmosphériques – Mesures du 30 octobre au 3 novembre 2023

ABRÉVIATIONS, ACRONYMES ET SYMBOLES

AQ: Assurance qualité

AQ/CQ: Assurance et contrôle de qualité

CEAEQ : Centre d'expertise en analyse environnementale du Québec

CO₂: Dioxyde de carbone

CQ: Contrôle qualité

ECCC: Environnement et Changement climatique Canada (depuis 2016)

ISO/CEI 17025 : Prescriptions générales concernant la compétence des laboratoires d'étalonnages et d'essais diffusée conjointement par l'Organisation internationale de normalisation et la Commission électrotechnique internationale

LES : Lieu d'enfouissement sanitaire LET : Lieu d'enfouissement technique

O₂: Oxygène

RAA : Règlement sur l'assainissement de l'atmosphère (Q-2 r.4.1)

SOMMAIRE

Consulair a été mandatée par WSP Canada pour effectuer un programme de mesures des vitesses et températures dans les conduites d'alimentation des torchères des sites d'enfouissement de Gaspé, Matane, Saint-Flavien, Saint-Lambert-de-Lauzon, La Rouge, Mont-Laurier et Val-d'Or dans le cadre d'une vérification de conformité technique. Les travaux ont été effectués du 30 octobre au 3 novembre 2023.

Les objectifs de ce mandat étaient les suivants :

- Vérifier le débit de gaz de la conduite d'entrée des torchères aux différents sites clients;
- S'assurer que les travaux d'échantillonnage respectent les critères reconnus de contrôle de qualité.

Le tableau suivant présente un sommaire des résultats obtenus lors du programme.

SOMMAIRE DES MESURES & RÉSULTATS

HORAIRE DES ESSAIS								
SITE	Gaspé	LES - La Rouge	LET - La Rouge	Transfert - La Rouge				
DATE	2023-10-30	2023-11-03	2023-11-03	2023-11-03				
HUMIDITÉ DES GAZ								
HUMIDITÉ DES GAZ (%)	1.3	0.5	1.6	0.4				
CARACTÉRIST	IQUES DES	GAZ						
TEMPÉRATURE DES GAZ (°C)	11.0	12.4	22.3	13.3				
VITESSE DES GAZ (m/s)	27.7	31.6	34.0	10.0				
DÉBIT GAZ STANDARDISÉ HUMIDE (Sm³/h) à 0 °C, 101.3 kPa	178.60	192.36	207.62	62.93				
DÉBIT GAZ STANDARDISÉ HUMIDE (Sm³/h) à 0 °C, 101.3 kPa - Débitmètre client	173.00	199.00	214.40	62.70				
RAPPORT [0.95 ; 1.05]	0.969	1.034	1.033	0.997				
CONCENTRATION DES GAZ								
CO ₂ (% v/v s)	30.3	31.1	34.6	34.4				
CH ₄ (% v/v s)	43.1	43.2	53.8	54.2				
O ₂ (% v/v s)	0.2	1.6	0.7	0.7				
CO (ppmvs)	0.0	0.0	0.0	0.0				
R: Conditions de référence à 101.3 kPa et 25°C, sur base sèche.	R: Conditions de référence à 101.3 kPa et 25°C, sur base sèche.							

Rapport de caractérisation des émissions atmosphériques – Mesures du 30 octobre au 3 novembre 2023 Torchères

N/Réf: 23-7488

SOMMAIRE DES MESURES & RÉSULTATS - SUITE

02 2023-10-31 0.8 13.4 22.6	Lauzon	Val-d'Or 2023-11-02 1.2 20.2 41.9					
0.8 13.4 22.6	0.1 11.1 29.7	1.2 20.2 41.9					
13.4 22.6	11.1	20.2 41.9					
13.4 22.6	11.1	20.2 41.9					
22.6	29.7	41.9					
22.6	29.7	41.9					
122.77	164 61						
122.77	104.01	267.35					
120.70	164.00	262.00					
0.983	0.997	0.980					
CONCENTRATION DES GAZ							
30.0	36.1	24.8					
43.7	52.3	42.4					
1.5	1.7	6.7					
1.5		0.0					
	1.5	3-10					

Les équipements de mesure de débit de tous les sites présentent des résultats de débit des biogaz respectant la tolérance fixée par rapport aux mesures effectuées lors de nos travaux.

Les prélèvements d'échantillons ont été réalisés selon les règles de l'art applicables afin de répondre aux exigences du RAA (Q.2, r.4.1), en utilisant les méthodes recommandées par le Centre d'expertise en analyse environnementale du Québec (CEAEQ) du Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP) à l'intérieur du *Guide d'échantillonnage* à des fins d'analyses environnementales intitulé « Cahier 4, Échantillonnage des émissions atmosphériques en provenance de sources fixes », 4º édition du 15 septembre 2016.

1 INTRODUCTION

Consulair a été mandatée par WSP Canada pour effectuer un programme de mesures des vitesses et températures dans les conduites d'alimentation des torchères des sites d'enfouissement de Gaspé, Matane, Saint-Flavien, Saint-Lambert-de-Lauzon, La Rouge, Mont-Laurier et Val-d'Or dans le cadre d'une vérification de conformité technique. Les travaux ont été effectués du 30 octobre au 3 novembre 2023.

Nos travaux se sont limités à réaliser la méthodologie applicable recommandée de la Méthode B, SPE 1/RM/8 d'ECCC par des mesures ponctuelles à chaque site déterminé.

Le présent document fournit le programme détaillé de mesures ainsi que le programme d'assurance et de contrôle de la qualité qui a été mis en vigueur lors des essais.

1.1 OBJECTIFS DU PROGRAMME

L'objectif des travaux était de vérifier les débits de biogaz mesurés par les équipements en place aux différents sites clients.

1.2 AMPLEUR DU PROGRAMME

Le programme englobait les sources (procédés) visés au tableau 1-1.

TABLEAU 1-1 - SOURCES ET PARAMÈTRES À MESURER

SOURCES / MÉTHODES
Torchère - Gaspé
LET Torchère - Matane
LET Torchère - La Rouge
LES Torchère - La Rouge
Station Transfert Torchère - La Rouge
Torchère – Mont-Laurier
Torchère – Saint-Flavien
Torchère – Saint-Lambert-de-Lauzon
Torchère – Val-d'Or

Les caractéristiques des gaz (vitesse, température et humidité) ont été mesurées.

2 <u>INTERVENANTS DU PROJET</u>

Les informations sur le client et les contacts sont disponibles au tableau 2-1. Les travaux d'échantillonnage ont été effectués par l'équipe de Consulair présentée au tableau 2-2.

TABLEAU 2-1 - DESCRIPTION DU CLIENT ET DES CONTACTS

COMPAGNIE & ADRESSE	CONTACT	FONCTION LORS DES TRAVAUX
WSP Canada 1135, boulevard Lebourgneuf Québec (Québec) Canada G2K 0M5 Téléphone: (418) 623-2254 Télécopieur: (418) 624-1857 Sans frais: 866-217-5815	Marc Bisson Téléphone : 581-814-5882 418-571-1109 Courriel : marc.bisson@wsp.com	Directeur de Projets Gestion environnementale

TABLEAU 2-2 – ÉQUIPE DE CONSULAIR IMPLIQUÉE DANS LE PROJET

PERSONNEL	TITRE	EXPÉRIENCE	FONCTION LORS DES TRAVAUX
Aurélien Perret	Chargé de projets	11 ans	Prise de mesures sur le terrain. Compilation des données
Julie Vaillancourt, ing.	Chargée de projets	23 ans	Rédaction du rapport
Pascal Waltzing	Chargé de projets	21 ans	Vérification du rapport

3 INFORMATIONS & LOCALISATION DES SITES DE MESURES

3.1 LIEUX DES TRAVAUX

Les adresses de réalisation des travaux effectués sont les suivantes :

LET de Gaspé

1050, montée Wakeham, Gaspé (QC), G4X 2A2;

❖ LET de Matane

330, rue Yves-Bérubé, Matane (QC), G4W 3M6;

❖ LET de St-Flavien

1450, Rang Pointe-du-Jour, St-Flavien (Qc) G0S 2M0;

❖ LES et LET de La Rouge

688, Chemin du Parc industriel, Rivière-Rouge (Qc) J0T 1T0;

❖ LET de Mont-Laurier

1064, Rue Industrielle, Mont-Laurier (Qc) J9L 3V6;

❖ LES de Saint-Lambert-de-Lauzon

515 Rue Saint-Aimé, Saint-Lambert-de-Lauzon, QC G0S 2W0;

❖ LET de Val-d'Or

2001, 3e Avenue Est, Val-d'Or (Québec) J9P 7B4;

Rapport de caractérisation des émissions atmosphériques – Mesures du 30 octobre au 3 novembre 2023 Torchères

4 ÉCHANTILLONNAGE

4.1 CONDITIONS D'EXPLOITATION ET D'OPÉRATION DES PROCÉDÉS (SOURCES)

Afin de s'assurer du fonctionnement adéquat des équipements d'opération durant tout le programme de mesures, M. Marc Bisson de WSP s'est assuré du bon fonctionnement du procédé et il a assisté aux mesures effectuées aux différents sites clients.

4.2 CARACTÉRISTIQUES DES POINTS D'ÉMISSION

Les caractéristiques du lieu d'échantillonnage des points d'émission sont présentées au tableau 4-1. La figure 4-1 montre les deux critères de sélection du site de prélèvement (mesure), soit les longueurs de conduit en amont d'une perturbation (A) et en aval d'une perturbation (B). Le nombre de points d'échantillonnage a été sélectionné à l'aide de ces deux longueurs selon la méthode A de la SPE 1/RM/8 d'Environnement et Changement climatique Canada intitulée « Détermination du lieu d'échantillonnage et des points de prélèvement ».

TABLEAU 4-1 - CARACTÉRISTIQUES DU LIEU D'ÉCHANTILLONNAGE DES POINTS D'ÉMISSION

SOURCE / POINT D'ÉMISSION	DIAMÈTRE AU POINT D'ÉCHANTILLONNAGE	NOMBRE DE DIAMÈTRES		NOMBRE DE PORTS	NOMBRE DE POINTS D'ÉCHANTILLONNAGE	
	(m)	B _D	A _D	UTILISÉS	PAR TRAVERSE	TOTAL
Gaspé	0.049	17.3	40.3	1	8	8
LET - Matane	0.046	6.6	9.3	1	8	8
LET – La Rouge	0.049	9.4	22.5	1	8	8
LES – La Rouge	0.048	17.5	40.7	1	8	8
Transfert – La Rouge	0.049	10.9	9.3	1	8	8
Mont-Laurier	0.049	68.1	26.2	1	8	8
Saint-Flavien	0.046	29.6	22.7	1	8	8
Saint-Lambert-de-Lauzon	0.046	22.0	27.5	1	8	8
Val-d'Or	0.049	17.3	40.3	1	8	8

A_D - nombre de diamètres de conduit en amont d'une perturbation de l'écoulement

B_D - nombre de diamètres de conduit en aval d'une perturbation de l'écoulement

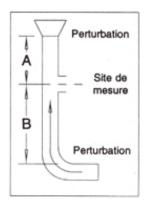


FIGURE 4-1 – CRITÈRES DE PLACEMENT DU LIEU D'ÉCHANTILLONNAGE

4.3 MÉTHODES D'ÉCHANTILLONNAGE

Les méthodes d'échantillonnage utilisées dans le cadre de cette caractérisation sont recommandées par le « Guide d'échantillonnage à des fins d'analyses environnementales » publié par le Centre d'expertise en analyse environnementale du Québec (CEAEQ) et plus spécifiquement le Cahier 4 « Échantillonnage des émissions atmosphériques en provenance de sources fixes » 4^e édition du 15 septembre 2016.

Les différentes méthodes d'échantillonnage utilisées pour la caractérisation des paramètres sont présentées au tableau 4-2.

TABLEAU 4-2 - MÉTHODES D'ÉCHANTILLONNAGE

PARAMÈTRES	MÉTHODE
Lieu d'échantillonnage, points de prélèvement	ECCC SPE 1/RM/8 Méthode A
Température	Thermocouple
Vitesse des gaz	ECCC SPE 1/RM/8 Méthode B
Humidité	ECCC SPE 1/RM/8 Méthode D

4.4 HORAIRE DES ESSAIS

Les tableaux ci-dessous présentent l'horaire des travaux réalisés aux sources caractérisées.

TABLEAU 4-3 - HORAIRE DES ESSAIS - TORCHÈRE - GASPÉ

SOURCE / POINT D'ÉMISSION	PARAMÈTRE	NUMÉRO ESSAI	DATE	HEURE DE DÉBUT	HEURE DE FIN	
	Débit, Température	1				
Biogaz		2	2023-10-30	8h00	8h30	
		3				

TABLEAU 4-4 - HORAIRE DES ESSAIS - LET TORCHÈRE - LA ROUGE

SOURCE / POINT D'ÉMISSION	PARAMÈTRE	NUMÉRO ESSAI	DATE	HEURE DE DÉBUT	HEURE DE FIN
Biogaz LET	Débit, Température	1		8h30	10h30
		2	2023-11-03		
		3			

TABLEAU 4-5 - HORAIRE DES ESSAIS - LES TORCHÈRE - LA ROUGE

SOURCE / POINT D'ÉMISSION	PARAMÈTRE	NUMÉRO ESSAI	DATE	HEURE DE DÉBUT	HEURE DE FIN
		1			
Biogaz LES	Débit, Température	2	2023-11-03	8h30	10h30
		3			

TABLEAU 4-6 - HORAIRE DES ESSAIS - STATION TRANSFERT TORCHÈRE - LA ROUGE

SOURCE / POINT D'ÉMISSION	PARAMÈTRE	NUMÉRO ESSAI	DATE	HEURE DE DÉBUT	HEURE DE FIN
		1			
Biogaz Transfert	Débit, Température	2	2023-11-03	8h30	10h30
		3			

TABLEAU 4-7 - HORAIRE DES ESSAIS - TORCHÈRE - MONT-LAURIER

SOURCE / POINT D'ÉMISSION	PARAMÈTRE	NUMÉRO ESSAI	DATE	HEURE DE DÉBUT	HEURE DE FIN
	Débit, Température	1	2023-11-02	14h30	
Biogaz		2			15h30
		3			

TABLEAU 4-8 – HORAIRE DES ESSAIS – TORCHÈRE – SAINT-FLAVIEN

SOURCE / POINT D'ÉMISSION	PARAMÈTRE	NUMÉRO ESSAI	DATE	HEURE DE DÉBUT	HEURE DE FIN
Biogaz	Débit, Température	1	2023-10-31	9h00	9h30
		2			
		3			

TABLEAU 4-9 - HORAIRE DES ESSAIS - TORCHÈRE - SAINT-LAMBERT-DE-LAUZON

SOURCE / POINT D'ÉMISSION	PARAMÈTRE	NUMÉRO ESSAI	DATE	HEURE DE DÉBUT	HEURE DE FIN	
Biogaz	Débit, Température	1	2023-10-31	7h00		
		2			7h30	
		3			1	

Rapport de caractérisation des émissions atmosphériques – Mesures du 30 octobre au 3 novembre 2023 Torchères

5

TABLEAU 4-10 - HORAIRE DES ESSAIS - TORCHÈRE - MATANE

SOURCE / POINT D'ÉMISSION	PARAMÈTRE	NUMÉRO ESSAI	DATE	HEURE DE DÉBUT	HEURE DE FIN
	Débit, Température	1			14h30
Biogaz		2	2023-10-30	13h30	
		3			

TABLEAU 4-11 - HORAIRE DES ESSAIS - TORCHÈRE - VAL-D'OR

SOURCE / POINT D'ÉMISSION	PARAMÈTRE	NUMÉRO ESSAI	DATE	HEURE DE DÉBUT	HEURE DE FIN
Biogaz	Débit, Température	1		8h00	8h30
		2	2023-11-02		
		3			

5 PROGRAMME AQ/CQ

Le programme d'assurance et contrôle de la qualité (AQ/CQ) en vigueur chez Consulair comporte plusieurs éléments permettant de valider les méthodologies utilisées lors de l'échantillonnage. Consulair s'assurait que chacune des étapes du programme de caractérisation des émissions atmosphériques incluant le programme AQ/CQ permette d'atteindre les objectifs définis, tout en respectant le délai fixé par le client. Les principaux points sont détaillés à l'intérieur de cette section.

5.1 AQ/CQ LORS DE LA PLANIFICATION

5.1.1 Équipe d'échantillonnage

L'équipe d'échantillonnage était composée d'une personne qualifiée. Le titre et les tâches effectuées lors de la caractérisation sont présentés au tableau 2-2.

Le personnel détenait les formations nécessaires pour respecter les aspects de santé et sécurité applicables sur le site du client.

5.1.2 Méthodes d'échantillonnage

Les méthodes d'échantillonnage utilisées ont été déterminées en fonction des procédés ou de la source caractérisée, des objectifs du mandat et des paramètres envisagés. Les méthodes utilisées sont présentées au tableau 4-2.

5.1.3 Équipements, instruments et réactifs utilisés

Les instruments utilisés ont fait l'objet d'un entretien régulier et sont étalonnés depuis moins d'un an. Les certificats d'étalonnage des équipements sont présentés à l'annexe 2 du rapport.

5.1.4 Formulaires de terrain

Les formulaires nécessaires à la prise de données sur le terrain pour les paramètres ciblés sont présentés à l'annexe 3 avec les feuilles de chantier.

5.2 AQ/CQ LORS DE L'ÉCHANTILLONNAGE

5.2.1 Critères spécifiques

Les méthodes d'échantillonnage manuelles utilisées ont des critères spécifiques tels que le positionnement des points de prélèvement, le nombre de points d'échantillonnage, le diamètre du conduit, les tests d'étanchéité, la vitesse de gaz, les températures, la présence de l'effet cyclonique et de l'écoulement inversé, l'isocinétisme, le débit de pompage, la durée des essais et le volume de gaz à échantillonner.

5.3 AQ/CQ POSTÉCHANTILLONNAGE

5.3.1 AQ/CQ lors de la rédaction du rapport d'échantillonnage

Les outils informatiques utilisés pour la compilation des données ont été vérifiés pour s'assurer de la précision des calculs. L'écriture du présent rapport d'échantillonnage a été faite par une chargée de projets ayant 23 années d'expérience pertinente. Le rapport a également été vérifié par un chargé de projets sénior.

6 **RÉSULTATS**

Les valeurs de référence sont rapportées à une température de 25°C et une pression atmosphérique de 101.3 kPa, sur une base sèche.

À moins d'indication contraire, les moyennes indiquées dans les tableaux suivants correspondent à la moyenne de tous les essais effectués à une même conduite et pour une même condition d'opération.

Les données compilées sont présentées à l'annexe 1 du rapport.

6.1 LET TORCHÈRE - GASPÉ

TABLEAU 6-1 - GASPÉ - CONDUITE DE BIOGAZ & DÉBITS DES GAZ

HORAIRE DES ESSAIS				
ESSAI	1	2	3	
DATE	2023-10-30	2023-10-30	2023-10-30	MOYENNE
HUMIDITÉ DES GAZ				
HUMIDITÉ DES GAZ (%)	1.3	1.3	1.3	1.3
CARACTÉRISTIQUES DES GA	Z			
TEMPÉRATURE DES GAZ (°C)	23.6	4.7	4.7	11.0
VITESSE DES GAZ (m/s)	28.4	27.3	27.3	27.7
DÉBIT GAZ ACTUEL (m³/h)	190	182	182	185
DÉBIT GAZ ACTUEL (pi³/m) (ACFM)	112	107	107	109
DÉBIT GAZ NORMALISÉ (Nm³/h)	189	194	194	192
DÉBIT GAZ HUMIDE (m³/h) à 25 °C, 101.3 kPa	192	197	197	195
DÉBIT GAZ STANDARDISÉ HUMIDE (Sm³/h) à 0 °C, 101.3 kPa	175.68	180.05	180.05	178.60
DÉBIT GAZ STANDARDISÉ HUMIDE (Sm³/h) à 0 °C, 101.3 kPa DÉBITMÈTRE DU CLIENT	173.00	173.00	173.00	173.00
RAPPORT [0.95 ; 1.05]	0.985	0.961	0.961	0.969
CONCENTRATION DES GAZ				
CO ₂ (% v/v s)	30.3	30.3	30.3	30.3
CH ₄ (% v/v s)	43.1	43.1	43.1	43.1
O ₂ (% v/v s)	0.2	0.2	0.2	0.2
CO (ppmvs)	0	0	0	0
R: Conditions de référence à 101.3 kPa et 25°C, sur base sèche.			<u> </u>	

6.2 LET TORCHÈRE - MATANE

TABLEAU 6-2 - MATANE - CONDUITE DE BIOGAZ & DÉBITS DES GAZ

HORAIRE DES ESSAIS				
ESSAI	1	2	3	MOYENNE
DATE	2023-10-30	2023-10-30	2023-10-30	MOYENNE
HUMIDITÉ DES GAZ				
HUMIDITÉ DES GAZ (%)	0.9	0.9	0.9	0.9
CARACTÉRISTIQUES DES GA	Z			
TEMPÉRATURE DES GAZ (°C)	8.8	8.8	8.8	8.8
VITESSE DES GAZ (m/s)	14.3	14.2	14.3	14.3
DÉBIT GAZ ACTUEL (m³/h)	99	98	99	99
DÉBIT GAZ ACTUEL (pi³/m) (ACFM)	58	58	58	58
DÉBIT GAZ NORMALISÉ (Nm³/h)	103	102	103	103
DÉBIT GAZ HUMIDE (m³/h) à 25 °C, 101.3 kPa	103	103	104	103
DÉBIT GAZ STANDARDISÉ HUMIDE (Sm³/h) à 0 °C, 101.3 kPa	94.76	94.64	94.87	94.76
DÉBIT GAZ STANDARDISÉ HUMIDE (Sm³/h) à 0 °C, 101.3 kPa DÉBITMÈTRE DU CLIENT	97.00	97.00	97.00	97.00
RAPPORT [0.95 ; 1.05]	1.024	1.025	1.022	1.024
CONCENTRATION DES GAZ				
CO ₂ (% v/v s)	30.3	30.3	30.3	30.3
CH ₄ (% v/v s)	52.3	52.3	52.3	52.3
O ₂ (% v/v s)	1.3	1.3	1.3	1.3
CO (ppmvs)	0	0	0	0
R: Conditions de référence à 101.3 kPa et 25°C, sur base sèche.				

6.3 LET TORCHÈRE - LA ROUGE

TABLEAU 6-3 – LET LA ROUGE – CONDUITE DE BIOGAZ & DÉBITS DES GAZ

HORAIRE DES ESSAIS									
ESSAI	1	2	3	MOYENNE					
DATE	2023-11-03	2023-11-03	2023-11-03	IVIOTEININE					
HUMIDITÉ DES GAZ									
HUMIDITÉ DES GAZ (%)	1.6	1.6	1.6	1.6					
CARACTÉRISTIQUES DES GAZ									
TEMPÉRATURE DES GAZ (°C)	22.3	22.3	22.3	22.3					
VITESSE DES GAZ (m/s)	33.9	34.1	34.1	34.0					
DÉBIT GAZ ACTUEL (m³/h)	221	222	222	222					
DÉBIT GAZ ACTUEL (pi³/m) (ACFM)	130	131	131	130					
DÉBIT GAZ NORMALISÉ (Nm³/h)	222	224	223	223					
DÉBIT GAZ HUMIDE (m³/h) à 25 °C, 101.3 kPa	226	227	227	227					
DÉBIT GAZ STANDARDISÉ HUMIDE (Sm³/h) à 0 °C, 101.3 kPa	206.76	208.24	207.87	207.62					
DÉBIT GAZ STANDARDISÉ HUMIDE (Sm³/h) à 0 °C, 101.3 kPa DÉBITMÈTRE DU CLII	ENT 214.40	214.40	214.40	214.40					
RAPPORT [0.95 ; 1.05]	1.037	1.030	1.031	1.033					
CONCENTRATION DES	GAZ								
CO ₂ (% v/v s)	34.6	34.6	34.6	34.6					
CH ₄ (% v/v s)	53.8	53.8	53.8	53.8					
O ₂ (% v/v s)	0.7	0.7	0.7	0.7					
CO (ppmvs)	0	0	0	0.0					
R: Conditions de référence à 101.3 kPa et 25°C, sur base sèche.									

6.4 LES TORCHÈRE - LA ROUGE

TABLEAU 6-4 – LES LA ROUGE – CONDUITE DE BIOGAZ & DÉBITS DES GAZ

HORAIRE DES ESS	SAIS							
SITE		1	2	3	MOYENNE			
DATE	2	023-11-03	2023-11-03	2023-11-03	IVIOTEININE			
HUMIDITÉ DES GAZ								
HUMIDITÉ DES GAZ (%)		0.5	0.5	0.5	0.5			
CARACTÉRISTIQUES D	ES GAZ							
TEMPÉRATURE DES GAZ (°C)		12.4	12.4	12.4	12.4			
VITESSE DES GAZ (m/s)		31.5	31.4	32.0	31.6			
DÉBIT GAZ ACTUEL (m³/h)		207	207	211	208			
DÉBIT GAZ ACTUEL (pi³/m) (ACFM)		122	122	124	123			
DÉBIT GAZ NORMALISÉ (Nm³/h)		208	207	211	208			
DÉBIT GAZ HUMIDE (m³/h) à 25 °C, 101.3 kPa		209	208	212	210			
DÉBIT GAZ STANDARDISÉ HUMIDE (Sm³/h) à 0 °C, 101.3 kPa		191.44	190.99	194.64	192.36			
DÉBIT GAZ STANDARDISÉ HUMIDE (Sm³/h) à 0 °C, 101.3 kPa DÉBITMÈTRE DU CLI	IENT	199.00	199.00	199.00	199.00			
RAPPORT [0.95 ; 1.05]		1.039	1.042	1.022	1.034			
CONCENTRATION DE	S GAZ							
CO ₂ (% v/v s)		31.1	31.1	31.1	31.1			
CH ₄ (% v/v s)		43.2	43.2	43.2	43.2			
O ₂ (% v/v s)		1.6	1.6	1.6	1.6			
CO (ppmvs)		0	0	0	0.0			
R: Conditions de référence à 101.3 kPa et 25°C, sur base sèche.								

6.5 STATION TRANSFERT TORCHÈRE - LA ROUGE

TABLEAU 6-5 – STATION TRANSFERT TORCHÈRE - LA ROUGE – CONDUITE DE BIOGAZ & DÉBITS DES GAZ

HORAIRE DES ESSAIS				
SITE	1	2	3	MOYENNE
DATE	2023-11-03	2023-11-03	2023-11-03	MOYENNE
HUMIDITÉ DES GAZ				
HUMIDITÉ DES GAZ (%)	0.4	0.4	0.4	0.4
CARACTÉRISTIQUES DES GAZ	<u> </u>			
TEMPÉRATURE DES GAZ (°C)	13.3	13.3	13.3	13.3
VITESSE DES GAZ (m/s)	9.6	10.1	10.5	10.0
DÉBIT GAZ ACTUEL (m³/h)	65	68	71	68
DÉBIT GAZ ACTUEL (pi³/m) (ACFM)	38	40	42	40
DÉBIT GAZ NORMALISÉ (Nm³/h)	65	69	71	68
DÉBIT GAZ HUMIDE (m³/h) à 25 °C, 101.3 kPa	66	69	72	69
DÉBIT GAZ STANDARDISÉ HUMIDE (Sm³/h) à 0 °C, 101.3 kPa	60.16	63.08	65.55	62.93
DÉBIT GAZ STANDARDISÉ HUMIDE (Sm³/h) à 0 °C, 101.3 kPa	62,70	62.70	62.70	62.70
DÉBITMÈTRE DU CLIENT	02.70	02.70	02.70	02.70
RAPPORT [0.95 ; 1.05]	1.042	0.994	0.956	0.997
CONCENTRATION DES GAZ				
CO ₂ (% v/v s)	34	.4 34.4	34.4	34.4
CH ₄ (% v/v s)	54	.2 54.2	54.2	54.2
O ₂ (% v/v s)	0.	7 0.7	0.7	0.7
CO (ppmvs)	(0	0	0.0
R: Conditions de référence à 101.3 kPa et 25°C, sur base sèche.				

6.6 TORCHÈRE - MONT-LAURIER

TABLEAU 6-6 - MONT-LAURIER - CONDUITE DE BIOGAZ & DÉBITS DES GAZ

HORAIRE DES ESSAIS								
SITE	1	2	3	MOYENNE				
DATE	2023-11-02	2023-11-02	2023-11-02	MOTENINE				
HUMIDITÉ DES GAZ								
HUMIDITÉ DES GAZ (%)	0.4	0.4	0.4	0.4				
CARACTÉRISTIQUES DES GAZ	Z							
TEMPÉRATURE DES GAZ (°C)	9.3	9.3	9.3	9.3				
VITESSE DES GAZ (m/s)	14.8	15.1	15.1	15.0				
DÉBIT GAZ ACTUEL (m³/h)	98	100	100	99				
DÉBIT GAZ ACTUEL (pi³/m) (ACFM)	57	59	59	58				
DÉBIT GAZ NORMALISÉ (Nm³/h)	101	103	103	102				
DÉBIT GAZ HUMIDE (m³/h) à 25 °C, 101.3 kPa	101	103	103	103				
DÉBIT GAZ STANDARDISÉ HUMIDE (Sm³/h) à 0 °C, 101.3 kPa	92.75	94.66	94.55	93.98				
DÉBIT GAZ STANDARDISÉ HUMIDE (Sm³/h) à 0 °C, 101.3 kPa DÉBITMÈTRE DU CLIENT	92.80	92.80	92.80	92.80				
RAPPORT [0.95 ; 1.05]	1.001	0.980	0.982	0.988				
CONCENTRATION DES GAZ								
CO ₂ (% v/v s)	27.8	27.8	27.8	27.8				
CH ₄ (% v/v s)	34.5	34.5	34.5	34.5				
O ₂ (% v/v s)	1.7	1.7	1.7	1.7				
CO (ppmvs)	0	0	0	0.0				
R: Conditions de référence à 101.3 kPa et 25°C, sur base sèche.								

6.7 TORCHÈRE - SAINT-FLAVIEN

TABLEAU 6-7 - SAINT-FLAVIEN - CONDUITE DE BIOGAZ & DÉBITS DES GAZ

HORAIRE DES ESSAIS								
SITE	1	2	3	MOYENNE				
DATE	2023-10-31	2023-10-31	2023-10-31	IVIOTEININE				
HUMIDITÉ DES GAZ								
HUMIDITÉ DES GAZ (%)	0.8	0.8	0.8	0.8				
CARACTÉRISTIQUES DES GAZ								
TEMPÉRATURE DES GAZ (°C)	13.4	13.4	13.4	13.4				
VITESSE DES GAZ (m/s)	22.6	22.6	22.7	22.6				
DÉBIT GAZ ACTUEL (m³/h)	135	135	136	135				
DÉBIT GAZ ACTUEL (pi³/m) (ACFM)	79	79	80	80				
DÉBIT GAZ NORMALISÉ (Nm³/h)	133	133	133	133				
DÉBIT GAZ HUMIDE (m³/h) à 25 °C, 101.3 kPa	134	134	135	134				
DÉBIT GAZ STANDARDISÉ HUMIDE (Sm³/h) à 0 °C, 101.3 kPa	122.61	122.46	123.24	122.77				
DÉBIT GAZ STANDARDISÉ HUMIDE (Sm³/h) à 0 °C, 101.3 kPa DÉBITMÈTRE DU CLIENT	120.70	120.70	120.70	120.70				
RAPPORT [0.95 ; 1.05]	0.984	0.986	0.979	0.983				
CONCENTRATION DES GAZ								
CO ₂ (% v/v s)	30.0	30.0	30.0	30.0				
CH ₄ (% v/v s)	43.7	43.7	43.7	43.7				
O ₂ (% v/v s)	1.5	1.5	1.5	1.5				
CO (ppmvs)	0	0	0	0.0				
R: Conditions de référence à 101.3 kPa et 25°C, sur base sèche.								

N/Réf: 23-7488

6.8 TORCHÈRE - SAINT-LAMBERT-DE-LAUZON

TABLEAU 6-8 - SAINT-LAMBERT-DE-LAUZON - CONDUITE DE BIOGAZ & DÉBITS DES GAZ

HORAIRE DES ESSAIS								
SITE	1	2	3	MOYENNE				
DATE	2023-10-31	2023-10-31	2023-10-31	IVIOTEININE				
HUMIDITÉ DES GAZ								
HUMIDITÉ DES GAZ (%)	0.1	0.1	0.1	0.1				
CARACTÉRISTIQUES DES GAZ								
TEMPÉRATURE DES GAZ (°C)	11.1	11.1	11.1	11.1				
VITESSE DES GAZ (m/s)	30.1	29.4	29.6	29.7				
DÉBIT GAZ ACTUEL (m³/h)	182	178	179	180				
DÉBIT GAZ ACTUEL (pi³/m) (ACFM)	107	105	105	106				
DÉBIT GAZ NORMALISÉ (Nm³/h)	182	178	179	180				
DÉBIT GAZ HUMIDE (m³/h) à 25 °C, 101.3 kPa	182	178	179	180				
DÉBIT GAZ STANDARDISÉ HUMIDE (Sm³/h) à 0 °C, 101.3 kPa	166.88	163.05	163.91	164.61				
DÉBIT GAZ STANDARDISÉ HUMIDE (Sm³/h) à 0 °C, 101.3 kPa DÉBITMÈTRE DU CLIENT	164.00	164.00	164.00	164.00				
RAPPORT [0.95 ; 1.05]	0.983	1.006	1.001	0.997				
CONCENTRATION DES GAZ								
CO ₂ (% v/v s)	36.1	36.1	36.1	36.1				
CH ₄ (% v/v s)	52.3	52.3	52.3	52.3				
O ₂ (% v/v s)	1.7	1.7	1.7	1.7				
CO (ppmvs)	0	0	0	0.0				
R: Conditions de référence à 101.3 kPa et 25°C, sur base sèche.								

6.9 TORCHÈRE - VAL-D'OR

TABLEAU 6-9 - VAL-D'OR - CONDUITE DE BIOGAZ & DÉBITS DES GAZ

HORAIRE DES ESSAIS								
SITE	1	2	3	MOYENNE				
DATE	2023-11-02	2023-11-02	2023-11-02	IVIOTEININE				
HUMIDITÉ DES GAZ								
HUMIDITÉ DES GAZ (%)	1.2	1.2	1.2	1.2				
CARACTÉRISTIQUES DES GAZ								
TEMPÉRATURE DES GAZ (°C)	20.2	20.2	20.2	20.2				
VITESSE DES GAZ (m/s)	40.8	42.3	42.5	41.9				
DÉBIT GAZ ACTUEL (m³/h)	277	288	289	285				
DÉBIT GAZ ACTUEL (pi³/m) (ACFM)	163	169	170	167				
DÉBIT GAZ NORMALISÉ (Nm³/h)	281	292	293	288				
DÉBIT GAZ HUMIDE (m³/h) à 25 °C, 101.3 kPa	285	295	296	292				
DÉBIT GAZ STANDARDISÉ HUMIDE (Sm³/h) à 0 °C, 101.3 kPa	260.68	270.26	271.11	267.35				
DÉBIT GAZ STANDARDISÉ HUMIDE (Sm³/h) à 0 °C, 101.3 kPa DÉBITMÈTRE DU CLIENT	262.00	262.00	262.00	262.00				
RAPPORT [0.95 ; 1.05]	1.005	0.969	0.966	0.980				
CONCENTRATION DES GAZ								
CO ₂ (% v/v s)	24.8	24.8	24.8	24.8				
CH ₄ (% v/v s)	42.4	42.4	42.4	42.4				
O ₂ (% v/v s)	4.6	4.6	4.6	4.6				
CO (ppmvs)	6.7	6.7	6.7	6.7				
R: Conditions de référence à 101.3 kPa et 25°C, sur base sèche.								

7 ANALYSE DES RÉSULTATS

La tolérance à respecter entre les résultats de débits des instruments en place aux sites (LES, LET) et les résultats des mesures de vérification, doit être entre 0.95 et 1.05.

7.1 LET DE GASPÉ (QC)

Le résultat moyen au LET de Gaspé est de 0.969, ce qui respecte la tolérance exigée.

7.2 LET DE MATANE (QC)

Le résultat moyen au LET de Matane est de 1.024, ce qui respecte la tolérance exigée.

7.3 LES ET LET DE LA ROUGE (QC)

Le résultat moyen aux LET, LES et Station transfert de La Rouge sont de 1.033 pour le LET, de 1.034 pour le LES et 0.997 pour la station transfert, *ce qui respecte la tolérance exigée*.

7.4 LET DE MONT-LAURIER (QC)

Le résultat moyen au LET de Mont-Laurier est de 0.988, ce qui respecte la tolérance exigée.

7.5 LET DE SAINT-FLAVIEN (QC)

Le résultat moyen au LET de St Flavien est de 0.983, ce qui respecte la tolérance exigée.

7.6 LES DE SAINT-LAMBERT-DE-LAUZON (QC)

Le résultat moyen au LES de St Lambert de Lauzon est de 0.997, ce qui respecte la tolérance exigée.

7.7 LET DE VAL-D'OR (QC)

Le résultat moyen au LET de Val d'Or est de 0.980, ce qui respecte la tolérance exigée.

Tous les débitmètres installés aux lieux d'enfouissement respectent l'exigence fixée, soit entre 0.95 et 1.05.

8 CONCLUSION

Consulair a été mandatée par WSP Canada pour effectuer un programme de mesures des vitesses et températures dans les conduites d'alimentation des torchères des sites d'enfouissement de Gaspé, Matane, Saint-Flavien, Saint-Lambert-de-Lauzon, La Rouge, Mont-Laurier et Val-d'Or dans le cadre d'une vérification de conformité technique. Les travaux ont été effectués du 30 octobre au 3 novembre 2023.

L'objectif des travaux était de vérifier les débits de biogaz mesurés par les équipements en place aux différents sites clients.

Les équipements de mesure de débit de tous les sites présentent des résultats de débit des biogaz respectant la tolérance fixée par rapport aux mesures effectuées lors de nos travaux.

Selon les méthodes, les procédures utilisées et les principaux critères de qualité, les résultats fournis dans ce rapport sont valides et représentatifs des conditions présentes lors des mesures.

Les mesures ont été faites en conformité selon les règles de l'art applicables, y compris les méthodes recommandées par le Centre d'expertise en analyse environnementale du Québec (CEAEQ) du Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP) à l'intérieur du *Guide d'échantillonnage à des fins d'analyses environnementales* intitulé « Cahier 4, Échantillonnage des émissions atmosphériques en provenance de sources fixes », 4^e édition du 15 septembre 2016.

9 RÉFÉRENCES

MELCCFP (2011). Règlement sur l'Assainissement de l'Atmosphère (RAA), Édition courante.

MELCCFP (2016). Guide d'échantillonnage à des fins d'analyses environnementales, Cahier 4, Échantillonnage des émissions atmosphériques en provenance de sources fixes, Édition courante.

WSP CANADA 7488 Gaspé / biogaz DÉBIT DES GAZ

uen	LIDE DEC ECCAIO			
	AIRE DES ESSAIS			MOVENINE
SITE DATE DE L'ESSAI	1 30/10/23	2 30/10/23	3 30/10/23	MOYENNE
				(1 à 3)
DÉBUT DE L'ESSAI	<u>08:00</u>	<u>08:10</u>	08:20	
FIN DE L'ESSAI	<u>08:10</u>	<u>08:20</u>	<u>08:30</u>	•
DURÉE DE L'ESSAI (minutes)	0	0	0	0
NOMBRE DE POINTS	8	8	8	8
DONNÉES DES ÉQUI				
PRESSION BAROMÉTRIQUE ("Hg)	<u>30.00</u>	<u>30.00</u>	<u>30.00</u>	30.00
PRESSION STATIQUE ("H2O)	<u>1.53</u>	<u>1.53</u>	<u>1.53</u>	1.53
_				#DIV/0!
COEFFICIENT DU PITOT (L-19)	<u>1.000</u>	<u>1.000</u>	<u>1.000</u>	1.000
pitot de WSP				#DIV/0!
L-19 = 0.958				#DIV/0!
L-20 = 0.972				#DIV/0!
HUMIDITÉ DES GA	Z & VOLUME ÉCHAN	FILLONNÉ		
				#DIV/0!
				#DIV/0!
HUMIDITÉ GAZ (BWO)	0.013	0.013	0.013	0.013
HUMIDITÉ GAZ (%)	1.320	1.320	1.320	1.3
	11020			#DIV/0!
				#DIV/0!
CARACTÉR	ISTIQUES DU CONDU	IIT		#DIVIO:
CAILAGIEI	NOTIQUED DO CONDO			#DIV/0!
				#DIV/0!
DIAMÈTRE DU CONDUIT (pi)	0.16	0.16	0.16	0.16
DIAMÈTRE DU CONDUIT (m)		_		
DIAMETRE DU CONDUIT (III)	0.049	0.049	0.049	0.049
				#DIV/0!
				#DIV/0!
				#DIV/0!
PRESSION CONDUIT ("Hg)	30.11	30.11	30.11	30.11
PRESSION COMPTEUR ("Hg)	30.00	30.00	35.47	31.83
SURFACE DU CONDUIT (pi²)	0.020	0.020	0.020	0.0
SURFACE DU CONDUIT (m²)	0.002	0.002	0.002	0.00
	RISTIQUES DES GAZ	<u> </u>		
TEMPÉRATURE CHEMINÉE (°F)	74.4	40.5	40.5	52
TEMPÉRATURE CHEMINÉE (°C)	23.6	4.7	4.7	11.0
CO ₂ (%)	30.3	30.3	30.3	30.3
O ₂ (%)	0.2	0.2	0.2	0.2
CO (ppm)	0	0.0	0	0
CH ₄ (%)	43.1	43.1	43.1	43
N ₂ (%)	26.1	26.1	26.1	26.1
42 (70) Ar (%)	0.31	0.31	0.31	0.31
POIDS MOLÉCULAIRE SEC	27.72	27.72	27.72	27.72
POIDS MOLÉCULAIRE SEC POIDS MOLÉCULAIRE HUMIDE	27.59	27.59	27.59	27.72
VITESSE DES GAZ (pi/s)	93.3	89.5	89.5	90.8
VITESSE DES GAZ (m/s)	28.4	27.3	27.3	27.7
DÉBITS GAZ ACTUELS (pi³/h)	6 696	6 428	6 428	6 517
DÉBITS GAZ ACTUELS (m³/h)	190	182	182	185
DÉBITS GAZ ACTUELS (pi³/m)(ACFM)	112	107	107	109
DÉBITS GAZ NORMALISÉS (Npi³/h)	6 683	6 849	6 849	6 794
DÉBITS GAZ NORMALISÉS (Nm³/h)	189	194	194	192
DÉBITS GAZ HUMIDE (m³/h) à 25 °C, 101.3 kPa	192	197	197	195
DÉBITS GAZ STANDARDISÉS HUMIDE (Sm³/h) à 0 °C, 101.3 kPa	175.68	180.05	180.05	178.60
DÉBITS GAZ NORMALISÉS (Npi³/m) (SCFM) à 25 °C	111	114	114	113
DÉBITS GAZ HUMIDE (pi³/m) (SCFM) à 25 °C, 101.3 kPa	113	116	116	115
DÉBITS GAZ HOMIDE (p) //ii) (SCFM) à 23 °C, 101.3 kPa DÉBITS GAZ STANDARDISÉS HUMIDE (Spi ³ /m) (SCFM) à 0 °C, 101.3 kPa	103	106	106	105

Trav.	Poin t	Durée de	Différence de	Δ	Vitesse	>10%Vmax	O ₂	CO ₂	CH₄	СО
#	#	pompage (minutes)	pression "H ₂		p/s	>1070VIII ax	%	%	%	ppm
1	1		1.8862	74.4	93.98		0.2	30.3	43.1	0
	2		1.9748	74.4	96.17	-				
	3		1.9503	74.4	95.57					
	4		1.6328	74.4	87.44					
2	1									
	2									
	3									
	4									

Trav.	Poin t	Durée de	Différence de	е	Vitesse	>10%Vmax	O ₂	CO ₂	CH₄	CO
#	#	pompage	pression "H ₂	Cheminée	p/s		%	%	%	ppm
		(minutes)	D P							
1	1		1.9794	40.5	93.17		0.2	30.3	43.1	0
	2		1.9239	40.5	91.86					
	3		1.8501	40.5	90.08					
	4		1.5736	40.5	83.08					
2	1									
	2									
	3									
	4									

Trav.	Poin t	Durée de	Différence de	9	Vitesse	>10%Vmax	O ₂	CO ₂	CH₄	CO
#	#	pompage	pression "H ₂	Cheminée	p/s		%	%	%	ppm
		(minutes)	D P							
1	1		1.9794	40.5	93.17		0.2	30.3	43.1	0
	2		1.9239	40.5	91.86					
	3		1.8501	40.5	90.08					
	4		1.5736	40.5	83.08					
2	1									
	2									
	3									
	4									

WSP CANADA 7488 LET La Rouge / CONDUITE DE GAZ NATUREL DÉBIT DES GAZ

	DEBIT DES GAZ			
	PRAIRE DES ESSAIS			MOVENINE
SITE DATE DE LIFOCAL	1	2	3	MOYENNE
DATE DE L'ESSAI	03/11/23	03/11/23	03/11/23	(1 à 3)
DÉBUT DE L'ESSAI	<u>7h</u>		<u>11:20</u>	
FIN DE L'ESSAI	0	2	<u>11:30</u>	0
DURÉE DE L'ESSAI (minutes)	0	0	0	0
NOMBRE DE POINTS	8	8	8	8
	UIPEMENTS D'ÉCHANT		22.22	22.22
PRESSION BAROMÉTRIQUE ("Hg)	<u>30.20</u>	<u>30.20</u>	<u>30.20</u>	30.20
PRESSION STATIQUE ("H2O)	<u>1.56</u>	<u>1.56</u>	<u>1.56</u>	1.56
COEFFICIENT BUILDITOT (L. 40)	4.000	4.000	4.000	#DIV/0!
COEFFICIENT DU PITOT (L-19)	<u>1.000</u>	<u>1.000</u>	<u>1.000</u>	1.000
pitot de WSP				#DIV/0!
L-19 = 0.958				#DIV/0!
L-20 = 0.972		-		#DIV/0!
HUMIDITE DES C	GAZ & VOLUME ÉCHAN	IILLONNE		# D IV/0I
				#DIV/0! #DIV/0!
LILIMIDITÉ CAZ (DIA/O)	0.040	0.040	0.010	
HUMIDITÉ GAZ (BWO)	0.016	0.016	0.016	0.016
HUMIDITÉ GAZ (%)	1.550	1.550	1.550	1.6
				#DIV/0!
				#DIV/0!
CARACT	ÉRISTIQUES DU CONDU	JIT		"B" "O
				#DIV/0!
				#DIV/0!
DIAMÈTRE DU CONDUIT (pi)	<u>0.16</u>	<u>0.16</u>	<u>0.16</u>	0.16
DIAMÈTRE DU CONDUIT (m)	0.048	0.048	0.048	0.048
				#DIV/0!
				#DIV/0!
				#DIV/0!
PRESSION CONDUIT ("Hg)	30.31	30.31	30.31	30.31
PRESSION COMPTEUR ("Hg)	30.20	30.20	#DIV/0!	#DIV/0!
SURFACE DU CONDUIT (pi²)	0.019	0.019	0.019	0.0
SURFACE DU CONDUIT (m²)	0.002	0.002	0.002	0.00
	CTÉRISTIQUES DES GAZ		70.4	70
TEMPÉRATURE CHEMINÉE (°F)	72.1	72.1	72.1	72
TEMPÉRATURE CHEMINÉE (°C)	22.3	22.3	22.3	22.3
CO ₂ (%)	34.6	34.6	34.6	34.6
O ₂ (%)	0.7	0.7	0.7	0.7
CO (ppm)	0	0.0	0	0
CH ₄ (%)	53.8	53.8	53.8	54
N ₂ (%)	10.8	10.8	10.8	10.8
Ar (%)	0.13	0.13	0.13	0.13
POIDS MOLÉCULAIRE SEC	27.12	27.12	27.12	27.12
POIDS MOLÉCULAIRE HUMIDE	26.98	26.98	26.98	26.98
VITESSE DES GAZ (pi/s)	111.1	111.9	111.7	111.6
VITESSE DES GAZ (m/s)	33.9	34.1	34.1	34.0
DÉBITS GAZ ACTUELS (pi ³ /h)	7 795	7 850	7 836	7 827
DÉBITS GAZ ACTUELS (m³/h)	221	222	222	222
DÉBITS GAZ ACTUELS (pi³/m)(ACFM)	130	131	131	130
DÉBITS GAZ NORMALISÉS (Npi ³ /h)	7 847	7 903	7 889	7 879
DÉBITS GAZ NORMALISÉS (Nm³/h)	222	224	223	223
DÉBITS GAZ HUMIDE (m³/h) à 25 °C, 101.3 kPa	226	227	227	227
DÉBITS GAZ STANDARDISÉS HUMIDE (Sm³/h) à 0 °C, 101.3 kPa	207	208	208	208
DÉBITS GAZ NORMALISÉS (Npi³/m) (SCFM) à 25 °C	131	132	131	131
DÉBITS GAZ HUMIDE (pi³/m) (SCFM) à 25 °C, 101.3 kPa	133	134	134	133
DÉBITS GAZ STANDARDISÉS HUMIDE (Spi³/m) (SCFM) à 0 °C, 101.3 kPa	122	123	122	122

N: Conditions de référence à 101.3 kPa et 25 °C, sur base sèche.

Trav.	Poin t	Durée de	Différence de)	Vitesse	>10%Vmax	O ₂	CO ₂	CH₄	CO
#	#	pompage	pression "H ₂	Cheminée	p/s		%	%	%	ppm
		(minutes)	D P							
						<u> </u>				
1	1		2.749800	72.1	114.13		0.7	34.6	53.8	0
	2		2.755200	72.1	114.24					
	3		2.239900	72.1	103.00					
	4		2.703900	72.1	113.17					
2	1									
	2									
	3									
	4									

Trav. #	Poin t #	Durée de pompage (minutes)	Différence de pression "H ₂ "		Vitesse p/s	>10%Vmax	O ₂ %	CO₂ %	CH₄ %	CO ppm
		/1				· · · · · · · · · · · · · · · · · · ·				
1	1		2.628100	72.1	111.57		0.7	34.6	53.8	0
	2		2.770000	72.1	114.54					
	3		2.783900	72.1	114.83					
	4		2.406400	72.1	106.76					
2	1									
	2									
	3									
	4									

Trav.	Poin t		Différence de		Vitesse	>10%Vmax	O ₂	CO ₂	CH₄	CO
#	#	pompage (minutes)	pression "H₂ □P	Cneminee	p/s		%	%	%	ppm
1	1		2.525300	72.1	109.37		0.7	34.6	53.8	0
	2		2.578800	72.1	110.52					
	3		2.713000	72.1	113.36					
	4		2.727700	72.1	113.67					
2	1									
	2									
	3									
	4									

Trav.	Poin t	Durée de	Différence de	9	Vitesse	>10%Vmax	O ₂	CO ₂	CH₄	СО
#	#	pompage (minutes)	pression "H ₂		p/s		%	%	%	ppm
1	1		2.2435	54.4	102.22		1.6	31.1	43.2	0
	2		2.3626	54.4	104.90	_				
	3		2.4456	54.4	106.73					
	4		2.1209	54.4	99.39					
2	1									
	2									
	3									
	4									

Trav.	Poin t	Durée de	Différence de	е	Vitesse	>10%Vmax	O ₂	CO ₂	CH₄	co
#	#	pompage	pression "H ₂	Cheminée	p/s		%	%	%	ppm
		(minutes)	D P							
						_				
1	1		2.2779	54.4	103.00		1.6	31.1	43.2	0
	2		2.3566	54.4	104.77					
	3		2.1765	54.4	100.68					
	4		2.3136	54.4	103.81					
2	1									
	2									
	3									
	4									

Trav.	Poin t	Durée de	Différence de	е	Vitesse	>10%Vmax	O ₂	CO ₂	CH₄	CO
#	#	pompage	pression "H ₂	Cheminée	p/s		%	%	%	ppm
		(minutes)	D P							
						_				
1	1		2.4128	54.4	106.01		1.6	31.1	43.2	0
	2		2.4014	54.4	105.76					
	3		2.3599	54.4	104.84					
	4		2.3020	54.4	103.55					
2	1									
	2									
	3									
	4									

WSP CANADA 7488 LES La Rouge/ biogaz DÉBIT DES GAZ

	DEBIT DES GAZ			
SITE	ORAIRE DES ESSAIS	2	3	MOYENNE
DATE DE L'ESSAI	1 03/11/23	03/11/23	03/11/23	
DÉBUT DE L'ESSAI	08:30	<u>03/11/23</u>	<u>03/11/23</u>	(1 à 3)
FIN DE L'ESSAI	00.30	11:15	<u>11:30</u>	
DURÉE DE L'ESSAI (minutes)	0	0	0	0
NOMBRE DE POINTS	8	8	8	8
	QUIPEMENTS D'ÉCHANTII		0	0
PRESSION BAROMÉTRIQUE ("Hg)	30.20	30.20	30.20	30.20
PRESSION STATIQUE ("H2O)	<u>30.20</u> -17.90	-17.90	-17.90	-17.90
TRESSION STATIGGE (TIZO)	<u>-17.90</u>	<u>-17.30</u>	<u>-17.30</u>	#DIV/0!
COEFFICIENT DU PITOT (L-19)	1.000	1.000	1.000	1.000
pitot de WSP	<u>1.000</u>	<u>1.000</u>	1.000	#DIV/0!
L-19 = 0.958				#DIV/0!
L-20 = 0.972				#DIV/0!
	GAZ & VOLUME ÉCHANT	II I ONNÉ		#DIV/0:
HOWIDITE DES	GAZ & VOLUME ECHANT	ILLONIAL		#DIV/0!
				#DIV/0!
HUMIDITÉ GAZ (BWO)	0.005	0.005	0.005	0.005
HUMIDITÉ GAZ (%)	0.490	0.490	0.490	0.003
HOWIDITE GAZ (70)	0.490	0.430	0.430	#DIV/0!
				#DIV/0!
CAPACT	TÉRISTIQUES DU CONDU	IT .		#DIV/0:
CAINAC	I ENISTIQUES DO CONDO	· · ·		#DIV/0!
				#DIV/0!
DIAMÈTRE DU CONDUIT (pi)	0.16	0.16	0.16	0.16
DIAMÈTRE DU CONDUIT (m)	0.048	0.048	0.048	0.048
DIAMETRE DO CONDOTT (III)	0.048	0.040	0.040	#DIV/0!
				#DIV/0!
				#DIV/0!
PRESSION CONDUIT ("Hg)	28.88	28.88	28.88	28.88
PRESSION COMPTEUR ("Hg)	30.20	30.20	#DIV/0!	#DIV/0!
SURFACE DU CONDUIT (pi ²)	0.020	0.020	#DIV/0: 0.020	#DIV/0!
SURFACE DU CONDUIT (m²)	0.020	0.020	0.002	0.00
	CTÉRISTIQUES DES GAZ		0.002	0.00
TEMPÉRATURE CHEMINÉE (°F)	54.4	54.4	54.4	54
TEMPÉRATURE CHEMINÉE (°C)	12.4	12.4	12.4	12.4
CO ₂ (%)	31.1	31.1	31.1	31.1
O ₂ (%)	1.6	1.6	1.6	
CO (ppm)	0	0.0	0	1.6 0
,				
CH ₄ (%)	43.2 23.8	43.2 23.8	43.2 23.8	43 23.8
N ₂ (%)				23.8
Ar (%) POIDS MOLÉCULAIRE SEC	0.28 27.89	0.28 27.89	0.28 27.89	0.28 27.89
POIDS MOLÉCULAIRE HUMIDE	27.84	27.84	27.84	27.84
VITESSE DES GAZ (pi/s)	103.3	103.1	105.0	103.8
VITESSE DES GAZ (m/s)	31.5	31.4	32.0 7 445	31.6
DÉBITS GAZ ACTUELS (pi³/h)	7 323	7 305		7 358
DÉBITS GAZ ACTUELS (m³/h)	207	207	211	208
DÉBITS GAZ ACTUELS (pi³/m)(ACFM)	122	122	124	123
DÉBITS GAZ NORMALISÉS (Npi³/h)	7 344	7 326	7 466	7 379
DÉBITS GAZ NORMALISÉS (Nm³/h)	208	207	211	209
DÉBITS GAZ HUMIDE (m³/h) à 25 °C, 101.3 kPa	209	208	212	210
DÉBITS GAZ STANDARDISÉS HUMIDE (Sm³/h) à 0 °C, 101.3 kPa	191	191	195	192
DÉBITS GAZ NORMALISÉS (Npi³/m) (SCFM) à 25 °C	122.39	122.10	124.44	122.98
DÉBITS GAZ HUMIDE (pi³/m) (SCFM) à 25 °C, 101.3 kPa	123	123	125	124
	113	112	115	113
DÉBITS GAZ STANDARDISÉS HUMIDE (Spi ³ /m) (SCFM) à 0 °C, 101.3 kPa N: Conditions de référence à 101.3 kPa et 25 °C, sur base sèche.	113	112	115	11

WSP CANADA 7488 Matane / biogaz DÉBIT DES GAZ

	EBIT DES GAZ			
SITE HOR	AIRE DES ESSAIS 1	2	3	MOYENNE
DATE DE L'ESSAI	30/10/23	30/10/23	30/10/23	
DÉBUT DE L'ESSAI	13h30	<u>30/10/23</u>	<u>30/10/23</u>	(1 à 3)
FIN DE L'ESSAI	131130			
DURÉE DE L'ESSAI (minutes)	0	0	0	0
,				
NOMBRE DE POINTS	8 PEMENTS D'ÉCHANT	8	8	8
			00.00	00.00
PRESSION BAROMÉTRIQUE ("Hg)	<u>29.90</u>	<u>29.90</u>	<u>29.90</u>	29.90
PRESSION STATIQUE ("H2O)	<u>-2.52</u>	<u>-2.52</u>	<u>-2.52</u>	-2.52
COFFFICIENT DIL DITOT (L. 40)	1.000	1 000	4 000	#DIV/0!
COEFFICIENT DU PITOT (L-19)	<u>1.000</u>	<u>1.000</u>	<u>1.000</u>	1.000
pitot de WSP				#DIV/0!
L-19 = 0.958				#DIV/0!
L-20 = 0.972	- a var inte éarrain			#DIV/0!
HUMIDITE DES GA	Z & VOLUME ÉCHANI	ILLONNE		#DIV/0!
LILIMIDITÉ CAZ (DIA/O)	0.000	0.000	0.000	#DIV/0!
HUMIDITÉ GAZ (BWO)	0.009	0.009	0.009	0.009
HUMIDITÉ GAZ (%)	0.850	0.850	0.850	0.9
				#DIV/0!
				#DIV/0!
CARACTER	RISTIQUES DU CONDU	<u>/III </u>		"B" //61
				#DIV/0!
				#DIV/0!
DIAMÈTRE DU CONDUIT (pi)	<u>0.1622</u>	<u>0.16</u>	<u>0.16</u>	0.16
DIAMÈTRE DU CONDUIT (m)	0.049	0.049	0.049	0.049
				#DIV/0!
				#DIV/0!
				#DIV/0!
PRESSION CONDUIT ("Hg)	29.71	29.71	29.71	29.71
PRESSION COMPTEUR ("Hg)	29.90	29.90	29.90	29.90
SURFACE DU CONDUIT (pi²)	0.021	0.021	0.021	0.0
SURFACE DU CONDUIT (m²)	0.002	0.002	0.002	0.00
	ÉRISTIQUES DES GAZ			
TEMPÉRATURE CHEMINÉE (°F)	47.9	47.9	47.9	48
TEMPÉRATURE CHEMINÉE (°C)	8.8	8.8	8.8	8.8
CO ₂ (%)	30.3	30.3	30.3	30.3
O ₂ (%)	1.3	1.3	1.3	1.3
CO (ppm)	0	0.0	0	0
CH ₄ (%)	52.3	52.3	52.3	52
N ₂ (%)	15.9	15.9	15.9	15.9
Ar (%)	0.19	0.19	0.19	0.19
POIDS MOLÉCULAIRE SEC	26.65	26.65	26.65	26.65
POIDS MOLÉCULAIRE HUMIDE	26.57	26.57	26.57	26.57
VITESSE DES GAZ (pi/s)	46.8	46.7	46.8	46.8
VITESSE DES GAZ (m/s)	14.3	14.2	14.3	14.3
DÉBITS GAZ ACTUELS (pi³/h)	3 479	3 475	3 483	3 479
DÉBITS GAZ ACTUELS (pi/hi)	99	98	99	99
DÉBITS GAZ ACTUELS (III /II) DÉBITS GAZ ACTUELS (pi³/m)(ACFM)	58	58	58	58
DÉBITS GAZ ACTOELS (DI /III)(ACFM) DÉBITS GAZ NORMALISÉS (Npi³/h)	3 622	3 617	3 626	3 622
DEBITS GAZ NORMALISES (Npi /h) DÉBITS GAZ NORMALISÉS (Nm³/h)	103	1 02	103	103
	103	102	104	103
DÉBITS GAZ HUMIDE (m³/h) à 25 °C, 101.3 kPa DÉBITS GAZ STANDARDISÉS HUMIDE (Sm³/h) à 0 °C, 101.3 kPa		94.64	94.87	94.76
	94.76			
DÉBITS GAZ NORMALISÉS (Npi³/m) (SCFM) à 25 °C DÉBITS GAZ HUMIDE (pi³/m) (SCFM) à 25 °C, 101.3 kPa	60 64	60 61	60 64	60
	61	61	61	61
DÉBITS GAZ HOMIDE (pi /ili) (SCFM) à 25 °C, 101.3 kPa DÉBITS GAZ STANDARDISÉS HUMIDE (Spi³/m) (SCFM) à 0 °C, 101.3 kPa	56	56	56	56

Trav.	Poin t	Durée de	Différence de	<u> </u>	Vitesse	>10%Vmax	O ₂	CO ₂	CH₄	СО
#	#	pompage (minutes)	pression "H ₂		p/s	>10 /6 VIII ax	%	%	%	ppm
1	1		0.4780	47.9	47.31		1.3	30.3	52.3	0
	2		0.4570	47.9	46.26	_				
	3		0.4480	47.9	45.81					
	4		0.4870	47.9	47.76					
2	1									
	2									
	3									
	3 4									

Trav.	Poin t	Durée de	Différence de	e	Vitesse	>10%Vmax	O_2	CO ₂	CH₄	co
#	#	pompage	pression "H ₂	Cheminée	p/s		%	%	%	ppm
		(minutes)	D P							
1	1		0.4670	47.9	46.77		1.3	30.3	52.3	0
	2		0.4650	47.9	46.67					
	3		0.4590	47.9	46.36					
	4		0.4740	47.9	47.12					
2	1									
	2									
	3									
	4									

Trav.	Poin t	Durée de	Différence de	е	Vitesse	>10%Vmax	O ₂	CO ₂	CH₄	CO
#	#	pompage	pression "H ₂	Cheminée	p/s		%	%	%	ppm
		(minutes)	D P							
				_		_			•	
1	1		0.4690	47.9	46.87		1.3	30.3	52.3	0
	2		0.4780	47.9	47.31					
	3		0.4550	47.9	46.16					
	4		0.4720	47.9	47.02					
2	1									
	2									
	3									
	4									

WSP CANADA 7488 Mont-Laurier / biogaz DEBIT DES GAZ

	DEBIT DES GAZ			
	ORAIRE DES ESSAIS	2	•	MOVENINE
SITE	1	2	3	MOYENNE
DATE DE L'ESSAI	02/11/23	02/11/23	02/11/23	(1 à 3)
DÉBUT DE L'ESSAI	<u>14:30</u>	<u>14:30</u>	<u>14:30</u>	
FIN DE L'ESSAI	0	^	<u>15:30</u>	0
DURÉE DE L'ESSAI (minutes)	0	0	0	0
NOMBRE DE POINTS	8	8	8	8
	QUIPEMENTS D'ÉCHAN			
PRESSION BAROMÉTRIQUE ("Hg)	<u>30.20</u>	<u>30.20</u>	<u>30.20</u>	30.20
PRESSION STATIQUE ("H2O)	<u>-11.00</u>	<u>-11.00</u>	<u>-11.00</u>	-11.00
·				#DIV/0!
COEFFICIENT DU PITOT (L-19)	<u>1.000</u>	<u>1.000</u>	<u>1.000</u>	1.000
pitot de WSP				#DIV/0!
L-19 = 0.958				#DIV/0!
L-20 = 0.972				#DIV/0!
HUMIDITÉ DES	GAZ & VOLUME ÉCHAI	NTILLONNÉ		
				#DIV/0!
				#DIV/0!
HUMIDITÉ GAZ (BWO)	0.004	0.004	0.004	0.004
HUMIDITÉ GAZ (%)	0.400	0.400	0.400	0.4
•				#DIV/0!
				#DIV/0!
CARAC	TÉRISTIQUES DU COND	DUIT		
				#DIV/0!
				#DIV/0!
DIAMÈTRE DU CONDUIT (pi)	<u>0.16</u>	<u>0.16</u>	<u>0.16</u>	0.16
DIAMÈTRE DU CONDUIT (m)	0.048	0.048	0.048	0.048
· <i>,</i>				#DIV/0!
				#DIV/0!
				#DIV/0!
PRESSION CONDUIT ("Hg)	29.39	29.39	29.39	29.39
PRESSION COMPTEUR ("Hg)	30.20	30.20	30.20	30.20
SURFACE DU CONDUIT (pi²)	0.020	0.020	0.020	0.0
SURFACE DU CONDUIT (m²)	0.002	0.002	0.002	0.00
,	CTÉRISTIQUES DES GA		0.002	0.00
TEMPÉRATURE CHEMINÉE (°F)	48.7	48.7	48.7	49
TEMPÉRATURE CHEMINÉE (°C)	9.3	9.3	9.3	9.3
CO ₂ (%)	27.8	27.8	27.8	27.8
O ₂ (%)	1.7	1.7	1.7	1.7
CO (ppm)	0	0.0	0	0
CO (ppin) CH₄ (%)	34.5	34.5	34.5	35
	35.6	35.6	35.6	35.6
N ₂ (%)				
Ar (%)	0.43 28.43	0.43 28.43	0.43 28.43	0.43 28.43
POIDS MOLÉCULAIRE SEC				
POIDS MOLÉCULAIRE HUMIDE	28.39	28.39	28.39	28.39
VITESSE DES GAZ (pi/s)	48.6	49.6	49.6	49.3
VITESSE DES GAZ (m/s)	14.8	15.1	15.1	15.0
DÉBITS GAZ ACTUELS (pi ³ /h)	3 448	3 519	3 515	3 494
DÉBITS GAZ ACTUELS (m³/h)	98	100	100	99
DÉBITS GAZ ACTUELS (pi³/m)(ACFM)	57	59	59	58
DÉBITS GAZ NORMALISÉS (Npi³/h)	3 561	3 634	3 630	3 608
DÉBITS GAZ NORMALISÉS (Nm³/h)	101	103	103	102
DÉBITS GAZ HUMIDE (m³/h) à 25 °C, 101.3 kPa	101	103	103	103
DÉBITS GAZ STANDARDISÉS HUMIDE (Sm³/h) à 0 °C, 101.3 kPa	92.75	94.66	94.55	93.98
DÉBITS GAZ NORMALISÉS (Npi³/m) (SCFM) à 25 °C	59	61	61	60
DÉBITS GAZ HUMIDE (pi³/m) (SCFM) à 25 °C, 101.3 kPa	60	61	61	60
DÉBITS GAZ HOMIDE (pi /iii) (SCFM) à 25 °C, 101.3 kPa DÉBITS GAZ STANDARDISÉS HUMIDE (Spi³/m) (SCFM) à 0 °C, 101.3 kPa	55	56	56	55

Trav.	Poin t	Durée de	Différence d	е	Vitesse	>10%Vmax	O ₂	CO ₂	CH₄	СО
#	#	pompage			p/s		%	%	%	ppm
		(minutes)	D P							
			0.4500	40.7	4474			07.0	0.4.5	_
1	1		0.4502	48.7	44.71		1.7	27.8	34.5	0
	2		0.5730	48.7	50.44					
	3		0.5603	48.7	49.88					
	4		0.5531	48.7	49.55					
2	1									
	2									
	3									
	4									

Trav. #	Poin t	Durée de pompage	Différence d pression "H		Vitesse p/s	>10%Vmax	O ₂ %	CO ₂	CH₄ %	CO ppm
		(minutes)	D P		μ,σ				,,	PP
1	1		0.5569	48.7	49.72		1.7	27.8	34.5	0
	2		0.5656	48.7	50.11	_				
	3		0.5441	48.7	49.15					
	4		0.5538	48.7	49.59					
2	1									
	2									
	3									
	4									

Trav.	Poin t	Durée de	Différence d	le	Vitesse	>10%Vmax	02	CO ₂	CH₄	СО
#	#	pompage	pression "H	2 Cheminée	p/s		%	%	%	ppm
		(minutes)	D P							
			0.7.00							_
1	1		0.5490	48.7	49.37		1.7	27.8	34.5	0
	2		0.5415	48.7	49.03					
	3		0.5605	48.7	49.88					
	4		0.5643	48.7	50.05					
2	1									
	2									
	3									
	4									

WSP CANADA 7488

St-Lambert-de-Lauzon / biogaz DÉBIT DES GAZ

	DÉBIT DES GAZ			
	RAIRE DES ESSAIS			
SITE	1	2	3	MOYENNE
DATE DE L'ESSAI	31/10/23	<u>31/10/23</u>	31/10/23	(1 à 3)
DÉBUT DE L'ESSAI	<u>07:30</u>			
FIN DE L'ESSAI	_		_	
DURÉE DE L'ESSAI (minutes)	0	0	0	0
NOMBRE DE POINTS	8	8	8	8
	JIPEMENTS D'ÉCHANT	TLLONNAGE		
PRESSION BAROMÉTRIQUE ("Hg)	<u>30.00</u>	<u>30.00</u>	<u>30.00</u>	30.00
PRESSION STATIQUE ("H2O)	<u>-19.92</u>	<u>-19.92</u>	<u>-19.92</u>	-19.92
				#DIV/0!
COEFFICIENT DU PITOT (L-19)	<u>1.000</u>	<u>1.000</u>	<u>1.000</u>	1.000
pitot de WSP				#DIV/0!
L-19 = 0.958				#DIV/0!
L-20 = 0.972				#DIV/0!
HUMIDITÉ DES G	AZ & VOLUME ÉCHAN	TILLONNÉ		
				#DIV/0!
				#DIV/0!
HUMIDITÉ GAZ (BWO)	0.001	0.001	0.001	0.001
HUMIDITÉ GAZ (%)	0.080	0.080	0.080	0.1
				#DIV/0!
				#DIV/0!
CARACTÉ	RISTIQUES DU CONDI	JIT		
				#DIV/0!
				#DIV/0!
DIAMÈTRE DU CONDUIT (pi)	<u>0.15</u>	<u>0.15</u>	<u>0.15</u>	0.15
DIAMÈTRE DU CONDUIT (m)	0.046	0.046	0.046	0.046
. ,				#DIV/0!
				#DIV/0!
				#DIV/0!
PRESSION CONDUIT ("Hg)	28.54	28.54	28.54	28.54
PRESSION COMPTEUR ("Hg)	30.00	30.00	#DIV/0!	#DIV/0!
SURFACE DU CONDUIT (pi²)	0.018	0.018	0.018	0.0
SURFACE DU CONDUIT (m²)	0.002	0.002	0.002	0.00
, ,	TÉRISTIQUES DES GA			
TEMPÉRATURE CHEMINÉE (°F)	51.9	51.9	51.9	52
TEMPÉRATURE CHEMINÉE (°C)	11.1	11.1	11.1	11.1
CO ₂ (%)	36.1	36.1	36.1	36.1
O ₂ (%)	1.7	1.7	1.7	1.7
CO (ppm)	0	0.0	0	0
CH ₄ (%)	52.3	52.3	52.3	52
N ₂ (%)	9.8	9.8	9.8	9.8
Ar (%)	0.12	0.12	0.12	0.12
POIDS MOLÉCULAIRE SEC	27.58	27.58	27.58	27.58
POIDS MOLÉCULAIRE HUMIDE	27.57	27.57	27.57	27.57
		96.6	97.1	
VITESSE DES GAZ (pi/s)	98.9			97.5 20.7
VITESSE DES GAZ (m/s)	30.1 6 430	29.4 6 282	29.6 6 316	29.7 6 343
DÉBITS GAZ ACTUELS (pi³/h)	6 430 182.1	6 282 177.9	178.8	6 343 179.6
DÉBITS GAZ ACTUELS (m³/h)				
DÉBITS GAZ ACTUELS (pi³/m)(ACFM)	107	105	105	106
DÉBITS GAZ NORMALISÉS (Npi³/h)	6 428	6 280	6 314	6 341
DÉBITS GAZ NORMALISÉS (Nm³/h)	182.0	177.8	178.8	179.5
DÉBITS GAZ HUMIDE (m³/h) à 25 °C, 101.3 kPa	182	178	179	180
DÉBITS GAZ STANDARDISÉS HUMIDE (Sm³/h) à 0 °C, 101.3 kPa	166.88	163.05	163.91	164.61
DÉBITS GAZ NORMALISÉS (Npi³/m) (SCFM) à 25 °C	107	105	105	106
DÉBITS GAZ HUMIDE (pi³/m) (SCFM) à 25 °C, 101.3 kPa	107	105	105	106
DÉBITS GAZ STANDARDISÉS HUMIDE (Spi³/m) (SCFM) à 0 °C, 101.3 kPa	98	96	96	97
N: Conditions de référence à 101.3 kPa et 25 °C, sur base sèche.		·		

Trav.	Poin t	Durée de	Différence de	Э	Vitesse	>10%Vmax	O ₂	CO ₂	CH₄	СО
#	#	pompage (minutes)	pression "H ₂	Cheminée	p/s		%	%	%	ppm
		,	2 2004	51.9	100.00		17	26.1	F0.2	0
1	2		2.2091 2.1418	51.9	102.30 100.73		1.7	36.1	52.3	0
	3		2.0334	51.9	98.14					
	4		1.8768	51.9	94.29					
2	1		1.07.00	01.0	01.20					
_	2									
	3									
	4									

Trav.	Poin t	Durée de	Différence de	9	Vitesse	>10%Vmax	O ₂	CO ₂	CH₄	СО
#	#	pompage (minutes)	pression "H ₂	Cheminée	p/s		%	%	%	ppm
1	1		2.1423	51.9	100.74		1.7	36.1	52.3	0
	2		2.0439	51.9	98.40					
	3		1.9219	51.9	95.41					
	4		1.7797	51.9	91.82					
2	1									
	2									
	3									
	4									

Trav. #	Poin t #	Durée de pompage (minutes)	Différence de pression "H ₂		Vitesse p/s	>10%Vmax	O ₂ %	CO₂ %	CH₄ %	CO ppm
1	1		2.0516	51.9	98.58		1.7	36.1	52.3	0
•	2		2.0013	51.9	97.37			00.1	02.0	
	3		1.9671	51.9	96.53					
	4		1.9430	51.9	95.94					
2	1									
	2									
	3									
	4									

WSP CANADA 7488 St-Flavien / Biogaz DÉBIT DES GAZ

но	RAIRE DES ESSAIS			
SITE	1	2	3	MOYENNE
DATE DE L'ESSAI	31/10/23	31/10/23	31/10/23	(1 à 3)
DÉBUT DE L'ESSAI	09:00	<u>01/10/20</u>	11:20	(1 4 0)
FIN DE L'ESSAI	03.00		11:30	
DURÉE DE L'ESSAI (minutes)	0	0	0	0
,				
NOMBRE DE POINTS	8 UIPEMENTS D'ÉCHANT	8 THEONNACE	8	8
PRESSION BAROMÉTRIQUE ("Hg)	30.10		30.10	30.10
PRESSION STATIQUE ("H2O)		<u>30.10</u>		
PRESSION STATIQUE (1120)	<u>-21.62</u>	<u>-21.62</u>	<u>-21.62</u>	-21.62 #DIV/0!
COEFFICIENT BUILDITOT (I. 40)	4.000	4.000	4.000	
COEFFICIENT DU PITOT (L-19)	<u>1.000</u>	<u>1.000</u>	<u>1.000</u>	1.000
pitot de WSP				#DIV/0!
L-19 = 0.958				#DIV/0!
L-20 = 0.972	47 6 VOLUME ÉQUAN	TILL ON INIÉ		#DIV/0!
HUMIDITE DES G	AZ & VOLUME ÉCHAN	TILLONNE		#DIV/0!
				#DIV/0! #DIV/0!
HI IMIDITÉ CAZ (DWO)	0.000	0.000	0.000	
HUMIDITÉ GAZ (BWO)	0.008	0.008	0.008	0.008
HUMIDITÉ GAZ (%)	0.810	0.810	0.810	0.8
				#DIV/0!
040407	DIOTICUES DU CONDI			#DIV/0!
CARACTE	RISTIQUES DU CONDI	JIT		"D" //61
				#DIV/0!
				#DIV/0!
DIAMÈTRE DU CONDUIT (pi)	<u>0.15</u>	<u>0.15</u>	<u>0.15</u>	0.15
DIAMÈTRE DU CONDUIT (m)	0.046	0.046	0.046	0.046
				<u>#DIV/0!</u>
				#DIV/0!
				#DIV/0!
PRESSION CONDUIT ("Hg)	28.51	28.51	28.51	28.51
PRESSION COMPTEUR ("Hg)	30.10	30.10	#DIV/0!	#DIV/0!
SURFACE DU CONDUIT (pi²)	0.018	0.018	0.018	0.0
SURFACE DU CONDUIT (m²)	0.002	0.002	0.002	0.00
	TÉRISTIQUES DES GA			
TEMPÉRATURE CHEMINÉE (°F)	56.1	56.1	56.1	56
TEMPÉRATURE CHEMINÉE (°C)	13.4	13.4	13.4	13.4
CO ₂ (%)	30.0	30.0	30.0	30.0
O ₂ (%)	1.5	1.5	1.5	1.5
CO (ppm)	0	0.0	0	0
CH ₄ (%)	43.7	43.7	43.7	44
N ₂ (%)	24.5	24.5	24.5	24.5
Ar (%)	0.29	0.29	0.29	0.29
POIDS MOLÉCULAIRE SEC	27.65	27.65	27.65	27.65
POIDS MOLÉCULAIRE HUMIDE	27.57	27.57	27.57	27.57
VITESSE DES GAZ (pi/s)	74.1	74.0	74.5	74.2
VITESSE DES GAZ (m/s)	22.6	22.6	22.7	22.6
DÉBITS GAZ ACTUELS (pi ³ /h)	4 767	4 761	4 791	4 773
DÉBITS GAZ ACTUELS (m³/h)	135	135	136	135
DÉBITS GAZ ACTUELS (pi³/m)(ACFM)	79	79	80	80
DÉBITS GAZ NORMALISÉS (Npi³/h)	4 688	4 682	4 712	4 694
DÉBITS GAZ NORMALISÉS (Nm³/h)	133	133	133	133
DÉBITS GAZ HUMIDE (m³/h) à 25 °C, 101.3 kPa	134	134	135	134
DÉBITS GAZ STANDARDISÉS HUMIDE (Sm³/h) à 0 °C, 101.3 kPa	122.61	122.46	123.24	122.77
DÉBITS GAZ STANDARDISES HOMIDE (SIII /II) à 0° C, 101.3 KFa DÉBITS GAZ NORMALISÉS (Npi³/m) (SCFM) à 25 °C	78	78	79	78
DÉBITS GAZ NORMALISES (NPI /m) (SCFM) à 25 °C DÉBITS GAZ HUMIDE (pi³/m) (SCFM) à 25 °C, 101.3 kPa	79	79	79 79	78 79
DÉBITS GAZ HOMIDE (pi /m) (SCFM) à 25 °C, 101.3 kPa DÉBITS GAZ STANDARDISÉS HUMIDE (Spi³/m) (SCFM) à 0 °C, 101.3 kPa	79 72	79 72	73	79 72
DEBITE CAZ STANDADDISES DI MIDE (SVI) NA GOSTAN A GOSTANA GOSTANA				

Trav.	Poin t	Durée de	Différence de	е	Vitesse	>10%Vmax	O ₂	CO ₂	CH₄	СО
#	#	pompage (minutes)	pression "H ₂	Cheminée	p/s		%	%	%	ppm
1			1.1456	56.1	74.00		1.5	30.0	43.7	0
'	2		1.1656	56.1	74.64		1.5	30.0	40.7	U
	3		1.1490	56.1	74.11					
	4		1.1357	56.1	73.68					
2	1									
	2									
	3									
	4									

Trav.	Poin t	Durée de	Différence de	9	Vitesse	>10%Vmax	O ₂	CO ₂	CH₄	СО
#	#	pompage (minutes)	pression "H ₂		p/s	710701max	%	%	%	ppm
			1.1337	56.1	73.62		1.5	30.0	43.7	0
ı	2		1.1337	56.1	73.02		1.5	30.0	43.7	U
	3		1.1439	56.1	73.93 74.50					
	4		1.1457	56.1	74.01					
2	1		1.1407	30.1	74.01					
_	2									
	3									
	4									

Trav.	Poin t	Durée de	Différence de		Vitesse	>10%Vmax	O ₂	CO ₂	CH₄	CO
#	#	pompage (minutes)	pression "H ₂	Cheminée	p/s		%	%	%	ppm
1	1		1.1552	56.1	74.31		1.5	30.0	43.7	0
	2		1.1785	56.1	75.06	_				
	3		1.1476	56.1	74.07					
	4		1.1614	56.1	74.51					
2	1									
	2									
	3									
	4									

Trav.	Poin t		Différence de		Vitesse	>10%Vmax	O ₂	CO ₂	CH₄	СО
#	#	pompage (minutes)	pression "H ₂	Cheminée	p/s		%	%	%	ppm
1	1		0.2016	56.0	31.14		0.7	34.4	54.2	0
	2		0.2094	56.0	31.73					
	3		0.1882	56.0	30.09					
	4		0.2277	56.0	33.09					
2	1									
	2									
	3									
	4									

Trav. #	Poin t #	Durée de pompage (minutes)	Différence de pression "H ₂		Vitesse p/s	>10%Vmax	O ₂ %	CO₂ %	CH₄ %	CO ppm
1	1		0.2567	56.0	35.14		0.7	34.4	54.2	0
'	2		0.2307	56.0	28.82		0.7	34.4	J4.2	U
	3		0.2346	56.0	33.59					
	4		0.2494	56.0	34.63					
2	1									
	2									
	3									
	4									

Trav. #	Poin t #	Durée de pompage (minutes)	Différence de pression "H ₂		Vitesse p/s	>10%Vmax	O ₂ %	CO ₂ %	CH₄ %	CO ppm
4		<u>, , , , , , , , , , , , , , , , , , , </u>	0.2544	56.0	24.06	· · · · · · · · · · · · · · · · · · ·	0.7	24.4	54.2	
1	2		0.2541 0.2531	56.0 56.0	34.96 34.89		0.7	34.4	54.2	0
	3		0.2331	56.0	34.05					
	4		0.2327	56.0	33.45					
2	1		0.2021	00.0	00.10					
_	2									
	3									
	4									

WSP CANADA 7488

Transfert La Rouge/ Biogaz DÉBIT DES GAZ

	DÉBIT DES GAZ			
НС	RAIRE DES ESSAIS			
SITE	1	2	3	MOYENNE
DATE DE L'ESSAI	03/11/23	03/11/23	03/11/23	(1 à 3)
DÉBUT DE L'ESSAI	<u>07:30</u>		<u>11:20</u>	
FIN DE L'ESSAI		<u>11:15</u>	<u>11:30</u>	
DURÉE DE L'ESSAI (minutes)	0	0	0	0
NOMBRE DE POINTS	8	8	8	8
	UIPEMENTS D'ÉCHANT	ILLONNAGE		
PRESSION BAROMÉTRIQUE ("Hg)	<u>30.20</u>	<u>30.20</u>	<u>30.20</u>	30.20
PRESSION STATIQUE ("H2O)	<u>-17.30</u>	<u>-17.30</u>	<u>-17.30</u>	-17.30
				#DIV/0!
COEFFICIENT DU PITOT (L-19)	<u>1.000</u>	<u>1.000</u>	<u>1.000</u>	1.000
pitot de WSP				#DIV/0!
L-19 = 0.958				#DIV/0!
L-20 = 0.972				#DIV/0!
HUMIDITÉ DES (GAZ & VOLUME ÉCHAN	TILLONNÉ		
				#DIV/0!
				#DIV/0!
HUMIDITÉ GAZ (BWO)	0.004	0.004	0.004	0.004
HUMIDITÉ GAZ (%)	0.420	0.420	0.420	0.4
				#DIV/0!
	,			#DIV/0!
CARACT	ÉRISTIQUES DU CONDU	JIT		
				#DIV/0!
				#DIV/0!
DIAMÈTRE DU CONDUIT (pi)	<u>0.16</u>	<u>0.16</u>	<u>0.16</u>	0.16
DIAMÈTRE DU CONDUIT (m)	0.049	0.049	0.049	0.049
				#DIV/0!
				#DIV/0!
				#DIV/0!
PRESSION CONDUIT ("Hg)	28.93	28.93	28.93	28.93
PRESSION COMPTEUR ("Hg)	30.20	30.20	#DIV/0!	#DIV/0!
SURFACE DU CONDUIT (pi ²)	0.020	0.020	0.020	0.0
SURFACE DU CONDUIT (m²)	0.002	0.002	0.002	0.00
	TÉRISTIQUES DES GAZ			
TEMPÉRATURE CHEMINÉE (°F)	56.0	56.0	56.0	56
TEMPÉRATURE CHEMINÉE (°C)	13.3	13.3	13.3	13.3
CO ₂ (%)	34.4	34.4	34.4	34.4
O ₂ (%)	0.7	0.7	0.7	0.7
CO (ppm)	0	0.0	0	0
CH ₄ (%)	54.2	54.2	54.2	54
N ₂ (%)	10.6	10.6	10.6	10.6
Ar (%)	0.13	0.13	0.13	0.13
POIDS MOLÉCULAIRE SEC	27.04	27.04	27.04	27.04
POIDS MOLÉCULAIRE HUMIDE	27.01	27.01	27.01	27.01
VITESSE DES GAZ (pi/s)	31.5	33.0	34.3	33.0
VITESSE DES GAZ (m/s)	9.6	10.1	10.5	10.0
DÉBITS GAZ ACTUELS (pi ³ /h)	2 305	2 417	2 511	2 411
DÉBITS GAZ ACTUELS (m³/h)	65	68	71	68
DÉBITS GAZ ACTUELS (pi³/m)(ACFM)	38	40	42	40
DÉBITS GAZ NORMALISÉS (Npi³/h)	2 309	2 422	2 516	2 416
DÉBITS GAZ NORMALISÉS (Nm³/h)	65	69	71	68
DÉBITS GAZ HUMIDE (m³/h) à 25 °C, 101.3 kPa	66	69	72	69
DÉBITS GAZ STANDARDISÉS HUMIDE (Sm³/h) à 0 °C, 101.3 kPa	60.16	63.08	65.55	62.93
DÉBITS GAZ NORMALISÉS (Npi³/m) (SCFM) à 25 °C	38	40	42	40
DÉBITS GAZ HUMIDE (pi³/m) (SCFM) à 25 °C, 101.3 kPa	39	41	42	40
DÉBITS GAZ STANDARDISÉS HUMIDE (Spi³/m) (SCFM) à 0 °C, 101.3 kPa	35	37	39	37

N: Conditions de référence à 101.3 kPa et 25 °C, sur base sèche.

WSP CANADA 7488 Val d'Or/ biogaz DÉBIT DES GAZ

	DEBIT DES GAZ			
	ORAIRE DES ESSAIS		•	MOVENINE
SITE DATE DE L'ESSAL	02/44/22	02/44/22	3 02/11/23	MOYENNE
DATE DE L'ESSAI DÉBUT DE L'ESSAI	02/11/23	02/11/23	<u>02/11/23</u>	(1 à 3)
FIN DE L'ESSAI	<u>08:45</u>			
DURÉE DE L'ESSAI (minutes)	0	0	0	0
NOMBRE DE POINTS	8	8	8	8
	QUIPEMENTS D'ÉCHANT		0	0
PRESSION BAROMÉTRIQUE ("Hg)	30.10	30.10	30.10	30.10
PRESSION STATIQUE ("H2O)	1.33	1.33	1.33	1.33
TRESSION STATIGE (TIES)	<u>1.00</u>	<u>1.00</u>	<u>1.00</u>	#DIV/0!
COEFFICIENT DU PITOT (L-19)	1.000	1.000	1.000	1.000
pitot de WSP	<u>11000</u>	<u></u>	<u>11000</u>	#DIV/0!
L-19 = 0.958				#DIV/0!
L-20 = 0.972				#DIV/0!
	GAZ & VOLUME ÉCHANT	TILLONNÉ		#B1170.
11011112112 525	<u> </u>			#DIV/0!
				#DIV/0!
HUMIDITÉ GAZ (BWO)	0.012	0.012	0.012	0.012
HUMIDITÉ GAZ (%)	1.150	1.150	1.150	1.2
			1.100	#DIV/0!
				#DIV/0!
CARACT	TÉRISTIQUES DU CONDU	JIT		
				#DIV/0!
				#DIV/0!
DIAMÈTRE DU CONDUIT (pi)	0.16	0.16	-0.16	0.05
DIAMÈTRE DU CONDUIT (m)	0.049	0.049	-0.049	0.016
				#DIV/0!
				#DIV/0!
				#DIV/0!
PRESSION CONDUIT ("Hg)	30.20	30.20	30.20	30.20
PRESSION COMPTEUR ("Hg)	30.10	30.10	30.12	30.11
SURFACE DU CONDUIT (pi²)	0.020	0.020	0.020	0.0
SURFACE DU CONDUIT (m²)	0.002	0.002	0.002	0.00
CARA	CTÉRISTIQUES DES GAZ	<u></u>		
TEMPÉRATURE CHEMINÉE (°F)	68.4	68.4	68.4	68
TEMPÉRATURE CHEMINÉE (°C)	20.2	20.2	20.2	20.2
CO ₂ (%)	24.8	24.8	24.8	24.8
O ₂ (%)	6.7	6.7	6.7	6.7
CO (ppm)	0	0.0	0	0
CH ₄ (%)	42.4	42.4	42.4	42
N ₂ (%)	25.8	25.8	25.8	25.8
Ar (%)	0.31	0.31	0.31	0.31
POIDS MOLÉCULAIRE SEC	27.19	27.19	27.19	27.19
POIDS MOLÉCULAIRE HUMIDE	27.08	27.08	27.08	27.08
VITESSE DES GAZ (pi/s)	134.0	138.9	139.3	137.4
VITESSE DES GAZ (m/s)	40.8	42.3	42.5	41.9
DÉBITS GAZ ACTUELS (pi³/h)	9 797	10 157	10 189	10 048
DÉBITS GAZ ACTUELS (m³/h)	277	288	289	285
DÉBITS GAZ ACTUELS (pi³/m)(ACFM)	163	169	170	167
DÉBITS GAZ NORMALISÉS (Npi³/h)	9 933	10 299	10 331	10 187
DÉBITS GAZ NORMALISÉS (Nm³/h)	281	292	293	288
DÉBITS GAZ HUMIDE (m³/h) à 25 °C, 101.3 kPa	285	295	296	292
DÉBITS GAZ STANDARDISÉS HUMIDE (Sm³/h) à 0 °C, 101.3 kPa	260.68	270.26	271.11	267.35
DÉBITS GAZ NORMALISÉS (Npi³/m) (SCFM) à 25 °C	166	172	172	170
DÉBITS GAZ HUMIDE (pi³/m) (SCFM) à 25 °C, 101.3 kPa	167	174	174	172
DÉBITS GAZ STANDARDISÉS HUMIDE (Spi³/m) (SCFM) à 0 °C, 101.3 kPa	153	159	160	157

N: Conditions de référence à 101.3 kPa et 25 °C, sur base sèche.

Trav.	Poin t	Durée de	Différence de	e	Vitesse	>10%Vmax	O ₂	CO ₂	CH₄	СО
#	#	pompage (minutes)	pression "H ₂		p/s	71070111141	%	%	%	ppm
1	1		3.773	68.4	133.24		6.7	24.8	42.4	0
-	2		3.803	68.4	133.76					
	3		3.788	68.4	133.50					
	4		3.891	68.4	135.30					
2	1									
	2									
	3									
	4									

T	Dain 4	Dunés de	Différence d		V:+	. 400/1/		60	CII	
Trav. #	Poin t #	Durée de pompage (minutes)	Différence de pression "H ₂		Vitesse p/s	>10%Vmax	O ₂ %	CO₂ %	CH₄ %	CO ppm
	•							•		,
1	1		4.094	68.4	138.79		6.7	24.8	42.4	0
	2		4.084	68.4	138.62					
	3		4.092	68.4	138.75					
	4		4.127	68.4	139.35					
2	1									
	2									
	3									
	4									

Trav.	Poin t	Durée de	Différence de	e	Vitesse	>10%Vmax	0,	CO ₂	CH₄	СО
#	#	pompage (minutes)	pression "H ₂		p/s	, 10,01111 u x	%	%	%	ppm
	,	-	•					•	•	
1	1		4.211	68.4	140.76		6.7	24.8	42.4	0
	2		4.171	68.4	140.09					
	3		3.980	68.4	136.84					
	4		4.139	68.4	139.55					
2	1									
	2									
	3									
	4									

4850, bd Gouin est Montréal-Nord, QC Canada H1G 1A2 514-328-2550 800-522-1226 www.chevrierinstruments.com

Certificat d'étalonnage

Date d'émission: 2023-02-02 Numéro du Certificat: CE153848

Étalonnage effectué par:

LA CIE J. CHEVRIER INSTRUMENTS INC.

4850 BOUL, GOUIN EST

MONTRÉAL-NORD, QC, CANADA H1G 1A2

Pour:

6625

I.D.:

CONSULAIR INC. 2022 RUE LAVOISIER

QUEBEC, QC, CANADA, G1N 4L5

Informations sur l'instrument:

Description: MODULE DIFFERENTIEL DES PRESSIONS

Manufacturier: KIMO INSTRUMENTS

Modéle: MPR 2500

Numéro de série: 4P141201589

Plage: -2500/2500 PA, -200/1300°C

Précision: ±(0.2%VM.+2 PA),±(0.3%VM.+0.4°C) DE -200 @ 0°C,±0.4°C AILLEURS

Conditions ambiantes: 22.5 °C / 20.5 %HR

État de l'instrument: BON

Résultat de l'étalonnage: Reçu Conforme

Approuvé par:

Date d'étalonnage:

Version Micrologiciel:

Version Logiciel:

2023-02-02

1.00 (B1650)

N/A

CONSULAIR 04461-2

Échéance: 2024-02-02

Technicien: Pierre Junior Berlus

KP

Commentaire:

- Étalonné avec indicateur Kimo MP210 ID: Consulair 05410, N/S: 2P150100358.

Catherine Gravel-Chevrier - DIRECTRICE LABO

4850, bd Gouin est Montréal-Nord, QC Canada HIG 1A2 514-328-2550 800-522-1226 www.chevrierinstruments.com

Certificat d'étalonnage

Date d'émission: 2023-02-02 Numéro du Certificat: CE153845

Étalonnage effectué par:

LA CIE J. CHEVRIER INSTRUMENTS INC.

4850 BOUL, GOUIN EST

MONTRÉAL-NORD, QC, CANADA H1G 1A2

Pour:

6625

1.D.:

CONSULAIR INC. 2022 RUE LAVOISIER

Version Micrologiciel:

Version Logiciel:

QUEBEC, QC, CANADA, G1N 4L5

Informations sur l'instrument:

Description: MODULE DIFFERENTIEL DES PRESSIONS

Manufacturier: KIMO INSTRUMENTS

Modéle: MPR 500

Numéro de série: 4P150102142

Plage: -500/500 PA, -200/1300°C

Précision: ±(0.2%VM.+0.8 PA) DE -100 @ 100 PA,±(0.2%VM.+1.5 PA) AILLEURS,±(0.3%VM.+0.4°C) DE -200 @ 0°C,

±0.4°C AILLEURS

Conditions ambiantes: 22.2 °C / 20.5 %HR

État de l'instrument: BON

Résultat de l'étalonnage: Reçu Conforme

Approuvé par:

 Date d'étalonnage:
 2023-02-02

 Échéance:
 2024-02-02

Technicien: Pierre Junior Berlus

CONSULAIR 04461-1

1.00 (B1908)

N/A

Commentaire:

- Étalonné avec indicateur Kimo MP210 ID: Consulair 05410, N/S: 2P150100358.

Catherine Gravel-Chevrier - DIRECTRICE LABO

4850, bd Gouin est Montréal-Nord, QC Canada H1G 1A2 514-328-2550 800-522-1226 www.chevrierinstruments.com

Rapport de Réparation / Repair Report

Réparé par / Repaired by:

LA CIE J. CHEVRIER INSTRUMENTS INC. 4850 GOUIN EST MONTREAL, QC, CANADA, H1G 1A2 Pour / For: 6625 CONSULAIR INC. 2022 RUE LAVOISIER QUEBEC, QC, CANADA, G1N 4L5

Information sur l'instrument / Instrument information:

Manufacturier / Manufacturer: Kimo Instruments

Modèle / Model: MP210

N.S / S.N: 2P150100358

I.D: CONSULAIR 05410

Commentaire(s) / Comment(s):

- Mise à jour micrologiciel ok.

Date de réparation / Repair date: 2023-02-02

État / Condition: Bon / Good Tech.: Pierre Junior Berlus

Anomalie(s) détectée(s) / Detected faults(s)

Action(s) corrective(s) / Corrective action(s)

	OFSTION GLOBALE AIR ET ENVIRONNEMENT	LE AIR ET ENVIR	ZONNEMENT				« Mesure	« Mesure de débit »			
	Documen	Document: F ECH 30			Révision Nº :	n Nº : 1			Page :	: 1 de 1	
Compagnie	62 VV : 9			Ville:	Kause		Source: 7	TRANSFERS	2	Projet: 23	88 H -
Diamètre conduite	Distance Amont Perturbation	#D amont Perturbation	Distance aval Perturbation	#D aval Perturbation	Diamètre_{Cone}	ID Pitot	C_P	Pression Statique (poH ₂ O)	O ₂ (%)	CO ₂ (%)	Température humide (°F)
1,9300	1,501	9,30	1,8pi	10,90	/		0001/	c't1-	t'0	<i>h'</i> 48	45,7
		10		Test 1			Test 2		k	Test 3	
Traverse	Point	Distance Points (po)	ΔP (poH ₂ O)	Température (°F)	Écoulement Cyclonique (°)	ΔP (poH ₂ O)	Température (°F)	Écoulement Cyclonique (°)	ΔP (poH ₂ O)	Température (°F)	Écoulement Cyclonique (°)
1	1	8/1	0,616	0'95							
(())	7	8/4	0, 2094								
	M	1 3/8	1885								
	4	1 6/8 1	ttn '0	_					4H) %	54,2%	
		-	- 1								
7	1		£252 0	26,0							
(EL)	7		0,1323	-					PATROS	30,2 14	14/49
\	ش		6, 2346							,	0
	4		0, 2495								
2	1		0,2541	560							
(63)	2		0,2531								
V	3		5, 2411								
	r		6,2327								
		7	N.C.								
		-									
Technicien	11							Date & Heure : 03,	03/11/23	Les por	10430
	,								1		

La dernière version de ce document est disponible sur le réseau (Z:\Formulaires\Stack)

Documen Compagnie: WSP Diamètre	Document: F ECH 30 W S P Distance #D amont Perturbation furthbation horturbation S 4 // P // Points (po) Point Points (po) A // R // P // P // P // P // P // P //	Distance aval Perturbation 2 8 p	#D aval #D aval Perturbation ### A S T T Test 1 Test 1 Température (°F)	Révision Nº:	n N° ∶ 1			Page :	: 1 de 1	
Compagnie: (WSP Distance Amont Conduite Perturbation I, 81 po 6, 4 pr Traverse Point CEA) 2 CEA 3 2 2 2 2 2 3 3 3 3 3 3	#D amont Perturbation \$\int_0, \forall D\$ Distance Points (po) \$\int_1 \forall R\$ \$\int 1 \forall R\$	243¢ 34.76 44.56 12.09	Wille: Lamba aval Perturbation Ap, SD Test 1 Test 1 Température (°F)	Nous C						
	#D amont Perturbation 40, 7D Distance Points (po) 1/8 1/8 1/8	2435 2435 2435 2435 2435 3626 4456	#D aval Perturbation /// / / D Test 1 Température (°F)	Diamètre _{Cône}		Source: ,	465		Projet: 23	887E
9 7 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9	40, 20 Distance Points (po) //8 ///8 ///8	78pi 2435 3626 4456	77,50 Test 1 Température (°F)	\	ID Pitot	င်	Pression Statique (poH ₂ O)	O ₂ (%)	CO ₂ (%)	Température humide (°F)
, ,	Distance Points (po) //8 //8 //8	2435 2435 3626 4456	Test 1 Température (°F)	\		000 'V	ob to -	1,6	31, 1	438
, s	Distance Points (po) ///8 ///8 ///8	2435 2435 3626 4456	Température (°F)			Test 2			Test 3	
	1/8			Écoulement Cyclonique (°)	ΔP (poH ₂ O)	Température (°F)	Écoulement Cyclonique (°)	ΔΡ (poH ₂ O)	Température (°F)	Écoulement Cyclonique (°)
	8/91		24 4							
,,	13/8		, /,							
,,	1 6/8									
β .	_							90 CH4	43.2%	
<i>y</i>		. 1						*		
		2,2339	54.4					9		
Μ	¢	2, 3566						PATOOS	30.2 ini	Ha
		13,1365								D
5		2,3136								
3		2,4128	544							
(63) 2		2,4014								
√		2, 3599								
5		2 3.20								
	_	8								
# P									8	
Technicien :							Date & Heure	Date & Heure : 03/11 / 23	de Pris	a 16 30

La dernière version de ce document est disponible sur le réseau (Z:\Formulaires\Stack)

Document : F ECH 30 Révision N° : 1 Page : 1 de 1		ON ON OF STION GLOBA	EONSULAIR	NONNEMENT				Form « Mesure	Formulaire « Mesure de débit »			
WKSP Source WKSP Source		Documer	It : F ECH 30			Révisio	n Nº : 1			Page :	1 de	
Point Perturbation Perturbatio	Compagnie				1		RER	Source			Projet: 🇷	88tt -
4, Zyr. 26, 2.D. 1, 0.0 1, 0.0 1, 2.g. 38 Point Points (po) Distance Points (po) Test 1 Test 2 Test 3	Diamètre conduite	Distance Amont Perturbation	#D amont Perturbation	Distance aval Perturbation	#D aval Perturbation	Diamètre _{Cone}	ID Pitot	ပ်	Pression Statique (poH_2O)	O ₂ (%)	CO ₂ (%)	Température humide (°F)
Point Distance AP (1904 ₅ O) Température Écoulement AP (1904 ₅ O) Température (1	1,910	4,2pi	26,20	_ •	68,19	\		11,000	00/11-	4,7	8'22	38,3
Point Distance Point (Points (°) Température Écoulement AP (poH ₂ O) Température Écoulement AP (poH ₂ O) Température Ecoulement AP (poH ₂ O) Température Polotion Po					Test 1			Test 2			Test 3	
1	Traverse	Point	Distance Points (po)	∆P (poH ₂ O)	Température (°F)	Écoulement Cyclonique (°)	ΔP (poH ₂ O)	Température (°F)	Écoulement Cyclonique (°)	ΔP (poH ₂ O)	Température (°F)	Écoulement Cyclonique (°)
2. 4/8 6/56-33 (3. 1.3/8 0, 556-3 (4. 1.6/8 0, 553-1 (5. 5.55-4/8 7 4. 1.6/8 0, 553-1 (6. 5.55-4/8 7 7. 0, 873-8 (7. 0, 873	7	7	1/8	0,4502	8							
3 1 3% 0, 5563 4 1 6/2 0, 5531 2 0, 5554 48,7 2 0, 5544 4 0, 5543 4 0, 5643 M	(64)	7										
4 16/8 0, 5531 2 0, 5554 3 0, 544 4 0, 558 3 0, 544 4 0, 5543 4 0, 5543 White: 10711123 At 1411, 23		M	1 3/8									
2 0,5569 48.7 3 0,5569 48.7 4 0,5538 4 0,5565 5 0,5565 4 0,5563		4	8/9 1	1						4H7 %	345%	
2 0,5856 48,7 3 0,544/ 4 0,538 48,7 2 0,5643 6,5643 6,646/ M Date & Heure: 171/1/22 M 14 14,5		S		8							¥).	
2 0,5856 famos 50,2 in the 3 0,2 in the 4 0,5838 famos 50,2 in the 4 0,5843 famos 50,2 in the 5 0	7	7			48.7							
3 0,544/ 4 0,5643 6 4 0,5643 6 4 Date & Heure: 10/11/22 At 16 Mg, 5	(62)	7	-		_					Paras	N	16
4 0,938 2 2 0,938 3 2 0,545 48,7 4 48,7 5 48,7		ო		0,5441							j	Ð
2 0,990 183 3 0,5605 4 0,5643 W Date & Heure: 101/1/23 At 14 M.S. 2		4			_							
2 6 54/5 1/4 6 54/5 4 6 6 56/3 4 6 1/4 1/5 2 1/4 1/4 1/4 1/5 2 1/4 1/4 1/5 2 1/4 1/4 1/5 2 1/4 1/4 1/5 2 1/4 1/4 1/5 2 1/4 1/4 1/5 2 1/4 1/4 1/5 2 1/4 1/4 1/5 2 1/4 1/4 1/5 2 1/4 1/4 1/5 2 1/4 1/4 1/5 2 1/4 1/4 1/5 2 1/4 1/4 1/5 2 1/4 1/4 1/5 2 1/4 1/4 1/5 2 1/4 1/4 1/5 2 1/4 1/4 1/5 2 1/4 1/4 1/5 2 1/4 1/4 1/4 1/5 2 1/4 1/4 1/5 2 1/4 1/4 1/5 2 1/4 1/4 1/5 2 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	C			000	001							
3 0, Ses 5 4 0, Ses 4.3 4 0, Ses 4.3 M Date & Heure: 109 (11/23 M, Mm N, S	2	7		0,470	494							
5 0, S643 4 0, S643 M Date & Heure: 07/11/23 At 14 n 5, 5	(63)	7										
4 0, 5643 Pate 2 Pate 2 Pate 2 Pate 3 Pate 3 Pate 5		Ŋ.										
M Date & Heure: 02/11/23 A 14 n 8 - 2		7										
M Date & Heure: 07/11/23 A 14 n 8 - 2												
M Date & Heure: 02/11/23 A 14 n 8 - 2												
M Date & Heure: 07/11/23 A 1/4 NS. 2												
M Date & Heure: 07/11/23 A 14 n 8 3		9										
	Technicien	M							Date & Heure	11/60	1	١,٠

La dernière version de ce document est disponible sur le réseau (Z:\Formulaires\Stack)

Document : F ECH 30 Nulle :		EONSULAIR	SUL/	None went				Form * Mesure	Formulaire « Mesure de débit »			
Distance HD amont Point Point Point Perturbation VIIIe: M.		Documen	t : F ECH 30			Révisio	n Nº : 1			Page:	: 1 de 1	
Distance	Compagni				Ville: Va	1 11/6	n	Source:	\		Projet: 23	88 H -
6 μρι μοβ Φ 2,8 ρι μ, β Φ Λισο Point Distance AP (poH ₂ O) Tenthérature Ecoulement AP (poH ₂ O) Tenthérature A (poH ₂ O) Tenthérature Test 2 A (poH ₂ O) Test 3 A (poH ₂ O) Test 4 A (poH ₂ O) Test 5 A (poH ₂ O) Test 6 A (poH ₂ O) Test 6 A (poH ₂ O) Test 7 A (poH ₂ O) A (poH ₂ O) A (poH ₂ O) A (poH ₂ O) A (poH	Diamètre conduite	Distance Amont Perturbation	#D amont Perturbation	Distance aval Perturbation	#D aval Perturbation	Diamètre _{Cône}	ID Pitot	Ö	Pression Statique (poH ₂ O)	O ₂ (%)	CO ₂ (%)	Température humide (°F)
Point Points (po) AP (poH ₂ O) Température Ecoulement AP (poH ₂ O) Température (°F) AP (poH ₂ O)	1,9/100	6,4%	403 D	28pi	14,3D	\		2000	1,332	t'9	8'42	£'£S
Point Distance Point Point Point					Test 1			Test 2			Test 3	
2 4/8 3 773 68,4 2 4/8 3 288 4 168 3 891 2 134 68,4 2 1,092 4 1,211 68,4 3 3,980 4 1,139	Traverse	Point	Distance Points (po)	ΔP (poH ₂ O)	Température (°F)	Écoulement Cyclonique (°)	ΔP (poH ₂ O)	Température (°F)	Écoulement Cyclonique (°)	∆P (poH ₂ O)	Température (°F)	Écoulement Cyclonique (°)
2- 4/8 3' 86.3 4 16/8 3' 88.4 1 16/8 3' 88.4 2 4,094 68,4 4 4,21 68,4 4 21 68,4 5 5,092 6 4,139 6 4,139	7	N	8/2		68.4							
3 13% 3, 288 4 168 3, 891 2 4, 094 68,4 3 4, 092 4 1, 21 68,4 5 5, 986 4 1, 39 4 1, 39	(EA)	2	8/4									
4 198 3' 891 2 4,094 68,4 3 4,092 4 4,223 4 4,234 5 5,439 4 1,139	,	حي	13/8								- / - /	
2 4,094, 68,4 3 4,092 4,123 4,211, 68,4 3 3,980 4,139 4,139		h	8/9 V	- 1						1/2 CH14	0/474	
2 4,094 68,4 3 4,092 4 4,21 68,4 2 4,74 3 3,980 4 5,139			24.5	,							,	
2 4,086 1 3 4,092 1 4 4,24 68,4 3 3,980 1 4 4,39 1 4 4,39 1	7	1		4,094	15					9		
3 4 4.22 4 4.24 5 3.980 4 4.39 4 4.39	(62)	2			_					/Arnos	30,1 inthe	0
2 2 4, 211 68,4 3 980 4 4, 139		Ŋ								0		
2 4, 211 68,4 3 980 4 4, 439 4 4, 439		4		4,123								
2 2 3 980 4 4, 139 4 4 1, 139		3			. (
2 3 980 4 4, 139 4 4, 139	~	1		4, 211	68,4							
3 980 4 4,139 W	(53)	2		4. 171	` -							
4 4,139		Υ		3 980				(4				
		4		4, 139								
# H			-	0								
THE STATE OF THE S												
THE STATE OF THE S												
THE STATE OF THE S												
TH.												
1/1	Technicien	H							Date & Heure	Date & Heure : 02/11/23	de 8n	a 8430

La dernière version de ce document est disponible sur le réseau (Z:\Formulaires\Stack)

Document : F ECH 30 Nulle : St CLAVi E \ Amont Source : Distance W B St CLAVi E \ Amont Perturbation Amont Distance Amont Perturbation Perturbation Perturbation Perturbation Perturbation Amont Test		O SESTION BLOBA	EONSULAIR	NNE MENT				Form « Mesure	Formulaire « Mesure de débit »			
Distance Wannt Distance aval #D aval Dismètre _{Cone} Distance aval #D aval Dismètre _{Cone} Distance aval #D aval Dismètre _{Cone} Distance aval #D aval		Documen	t: F ECH 30			Révisio	n Nº : 1			: Bage :	: 1 de 1	
Distance #D amont Distance aval #D aval Amont Perturbation A	Compagnie	2			Ville: 1	FLAVIER	5	Source	\		Projet: 23	- 7488
3,4 ρι 22,2 4,5 ρι 29,6 Ω Λι σου Point Point (P) Point Points (po) Δρ (poH ₂ O) Température Ecoulement Dounts (po) Δρ (poH ₂ O) Température Points (po) Δρ (poH ₂ O) Température A Λι Λι δι	Diamètre conduite	Distance Amont Perturbation	#D amont Perturbation	Distance aval Perturbation	#D aval Perturbation	Diamètre _{Cône}	ID Pitot	Ġ.	Pression Statique (poH ₂ O)	O ₂ (%)	CO ₂ (%)	Température humide (°F)
Point Points (po) AP (poH ₂ O) Température Écoulement AP (poH ₂ O) Température Points (po) (°F) (°F) (°F) (°F) (°F) (°F) (°F) (°F	1,810	3,4%	Ct'2		C9'62	\		1,000	-21,62	S'Y	2	18,1
Point Distance Points (pol 20) Température (°F) Écoulement (°F) AP (poH ₂ O) Température (°F) 2 1/8 1/45 54 8 1/45					Test 1			Test 2			Test 3	
2 4/8 1/456 S4 8 3 1/38 1/490 4 1/453 S4 8 4 1/60 1/433 S4 8 4 1/464 5 1/464 5 1/464 6 1/464 6 1/464	Traverse	Point	Distance Points (po)	∆P (poH ₂ O)	Température (°F)	Écoulement Cyclonique (°)	ΔP (poH ₂ O)	Température (°F)	Écoulement Cyclonique (°)	∆P (poH ₂ O)	Température (°F)	Écoulement Cyclonique (°)
2 18 1,490 3 18 4,490 4 16 1,435 3 1,464 4 1,452 5 1,464 5 1,464 7 1,464 9 1,464 9 1,464	7	1	3/2	1,1456								
3 13'8 1,490 4 166 1,4353 54.8 4 1,452 54.8 4 1,452 54.8 5 1,4456 5 1,4456 7 1,456 9 1,4644	(EX)	2	8/4	1,1656	,1							
4 1 % 4.357 4.88 2 4.4839 4.48 3 4.4644 4.4542 54.8 2 7.4552 54.8 3 7.4554 4.4546 4.		3	1 3/8	1, 1490	()							
2 1,1337 54.8 3 1,1464 4 1,1452 54.8 2 1,1496 3 1,1496 4 1,1644		5	8/9 /	1,1357						hH) %	26.56	
2 1,164 4 1,159 4 1,152 54,8 7 1,178 9 1,164 4 1,164 W			-									
3 1,164 1,1452 2 1,1452 3 1,1454 4 1,1644 1,1644	7	7		1,1337	24.8					4		
3 1, 164 1, 1852 54.8 2, 1, 1836 3, 1, 1644 4, 1, 1644	(53)	2		1,1439						VAMOS	30 1 inthe	G
2. 1, 1552 St, 8 4. 1, 1544 4. 1, 1644 4. 1, 1644	w 83	Μ		1,164								
2 2 1,182 3 1,184 4 1,164 1,164 1,164		4		1,1453								
2 7, 1552 S4,8 3 7, 1644 4 1, 1644 4				11234								
2 3 4, 1436 4 1, 1644 1, 1644 1, 1644	M	7		1,1552	~							
3 4 1, 1614 4 1, 1614 1, 1614	(E.3)	7	-	1, 1786								
4 1, 1614		6		1,1476								
		4		1, 1614								
			-									
136												
	Technicien:	H							Date & Heure : 31/10	:31/10/23	de gh	2 943

La dernière version de ce document est disponible sur le réseau (Z:\Formulaires\Stack)

	EONSULAIR	SUL/	Nonnement				Form « Mesure	Formulaire « Mesure de débit »			
	Document	Document: F ECH 30			Révision Nº :	'n N° : 1			Page :	: 1 de 1	
Compagnie	95/W :			Ville: 54	LANDER	1.	Source:	\		Projet: 23	88 ht
Diamètre conduite	Distance Amont Perturbation	#D amont Perturbation	Distance aval Perturbation	#D aval Perturbation	Diamètre _{Cône}	ID Pitot	ů.	Pression Statique (poH ₂ O)	02 (%)	CO ₂ (%)	Température humide (°F)
1,820	4,2%	33,5D	3,3pi	22 D	\		1,000	- 19,92	1,7	36,1	35,0
				Test 1			Test 2			Test 3	
Traverse	Point	Distance Points (po)	ΔP (poH ₂ O)	Température (°F)	Écoulement Cyclonique (°)	ΔP (poH ₂ O)	Température (°F)	Écoulement Cyclonique (°)	ΔP (poH ₂ O)	Température (°F)	Écoulement Cyclonique (°)
1	7	8/1	12 2091	51,9							
(27)	7	8/4	2,1418								
	8	13/8	2,0334								
	4	8/9 1	1,848						40 CM4	543%	
(00// 0								
\(\int_i\)	7		2,1425	21,7					Marie	2002	70
(62)	76		40701						1 11/1/03)	9
	5		1,7617								
	>		1,7979	-							
~	7		20516	51,9							
(63)	2		2,0013	Ţ							
V n:	3		1,9671								
	4		1,9430	-							
1 0 0 F	00							Date & Heire 21/13	21/11/12	2 10 24	242
ecilliciei	M								2/0/17	N.C.	

La dernière version de ce document est disponible sur le réseau (Z:\Formulaires\Stack)

Formulaire «Mesure de débit »	ment : F ECH 30 Révision Nº : 1 Page : 1 de 1	Sp. Ville: Matare Source: - Projet: 23-7488	e #D amont Distance aval #D aval Diamètre _{Cone} ID Pitot C _P Statique O ₂ (%) CO ₂ (%) Humide (*F) humide (*F)	9,30 12,0 6,60 / 1,000 -2,523 1,3 30,3 45,2	Test 3 Test 3	Distance Points (po) ΔP (poH ₂ O) Température (°F) Cyclonique (°) ΔP (poH ₂ O) ΔP (poH ₂ O) Température Ecoulement (°F) Température Ecoulement (°F) Cyclonique (°)	1/8 0 3431 47.4	4/8 0' 3940	2 6, 3823	1 6/2 6,3841 0/0 CHY 52,3%	6 th 38 hs 0	0,4/52 HATAS 299 in the	,	8614.9	0,4216 44.9	t80h'0	4967	0, 800		
EON SUBALE AIR ET	Document : F ECH 30	Compagnie: WSP		825 po 17 po 9,3		Traverse Point Distar Points	7	7	3 13	7	7 7	2 (23	3	5	3	(3)	3	7		

La dernière version de ce document est disponible sur le réseau (Z:\Formulaires\Stack)

Page: 1 de 1 Projet: 23 - CO ₂ (%) Te Test 3 Test 3 Test 3 TH4 (13, 1%) Co (MM) SS 30, 0 (MM) Page: 1 de 1 Test 3 Test 4 Test 4 Test 3 Test 4 Test 3 Test 4 Test 4 Test 3 Test 4 Test 4 Test 4 Test 4 Test 5 Test 4 Test 5 Test 5 Test 7 T	W	ON OLOBA	SCL /	None went				Form « Mesure	Formulaire « Mesure de débit »			
Distance		Documen	t : F ECH 30			Révisio				Page :		
Designation Distance available District Distric	Compagni	*)*)			\vee	SPE		Source	\		Projet: 23	S&M-
6 4 ρ i 4 ρ 3 D 2 8 ρ i 14 3 D	Diamètre conduite	Distance Amont Perturbation	#D amont Perturbation	Distance aval Perturbation	#D avaf Perturbation	Diamètre _{Còne}	ID Pitot	ථ	Pression Statique (poH ₂ O)	O ₂ (%)	CO ₂ (%)	Température humide (°F)
Distance Distance Coulement April Coulement Co		49	40,3D	28%		\	1,000 -	<u>^</u>	1,53	_	30, 3	5/19
Point Distance Distance of ports (P) Température (P) Coulement (P) Température (P) Tempér					Test 1			Test 2			Test 3	
2 4/8 1 8862 74.4 2 4/8 1 9482 3 1 38 1 4503 4 1 6/2 8 4	Traverse	Point	Distance Points (po)	ΔP (poH ₂ O)	Température (°F)	Écoulement Cyclonique (°)	∆P (poH ₂ O)	Température (°F)	Écoulement Cyclonique (°)	∆P (poH ₂ O)	Température (°F)	Écoulement Cyclonique (°)
2 4/8 / 4948 96 Hy 43/96 9	7	7	3/	7988 V	4.4							
3 13k 1, 9563 4 1 6128 1 1 1239 2 1 1 1239 4 1 1239 4 1 1 1239 4 1 1 1239 4 1 1 1239 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(64)	2	8/4	84th /	_							
4 4 6/9 1, 6328 9/0 CHY 43,1% 2 1, 9794 74.4 3 1, 850 1/4 4 1, 968 74.4 5 1, 966 1/4 4 1, 966 1/4 WHY WAY 100 100 8 Houre: 30/10/23 M. 84.5		3	1 3/8	1 9503							,	
7 1994 74.4 2 485e1 4 5736 4 1968 74.4 7 1968 74.4 7 1968 7 1968 W Date & Heure: 30/10/23 14. 84.5		5	1 6/8	1, 6328						16 CH4	43.1%	
2 1 1274 74.4 2 1 1284 14.4 3 1 1866 74.4 3 1 1966 14.4 4 1 1966 14.4 W Date & Heure: 36/10/23 11: 84.5	C			10001	1//							
7 1 8501 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7		1,7474	4.4					0	1	"
7 1, 5736 1, 4, 4	(64)	10		1 76.57						/ATTOS	0	2
7 1 968 74.4 2 1 986 3 1 9419 4 1, 1966 4 1, 1966 W Date & Heure: 30/10/23 M. 84.5) \		1 6501								١
2 1 966 2.4 3 1 949 4 4 1 1966 4 4 M. 4 966 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		3		1, 37.56	-							
2 1 966 4 1, 1966 4 1, 1966 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6	7		1,9608	77.7							
3 1 94/9	(E3)	2		1 1866	1							
4 1, 1966	`	3		1 9419								
M. Date & Heure: 30/10/23 M. Rh.		4		7,7966								
## Date & Heure: 30/10/23 ## 8#5												
M Su & Heure : 30/10/23 M Rh Su												
My Date & Heure: 30/10/23 Mr 84 %												
Date & Heure: 30/10/23 1/1 8/1/2												
	Technicien	AH.							Date & Heure	30/10/	K	Ph 20

La dernière version de ce document est disponible sur le réseau (Z:\Formulaires\Stack)

	EONSON SUBSECTION SUBS	SUL/	LAIR ET ENVIRONNEMENT				Form « Mesure	Formulaire « Mesure de débit »			
	Documen	Document: F ECH 30			Révision Nº :	n Nº : 1			Page :	1 de 1	
Compagnie	92W : ei			Ville:	Konse	1	Source: Z	ET		Projet: 23	887t
Diamètre conduite	Distance Amont Perturbation	#D amont Perturbation	Distance aval Perturbation	#D aval Perturbation) Diamètre _{Cône}	ID Pitot	Ср	Pression Statique (poH ₂ O)	O ₂ (%)	CO ₂ (%)	Température humide (°F)
1,890	1,5%	64%	3,6%	22,59	/		000'V	b895'V	t'0	34,6	
				Test 1			Test 2			Test 3	
Traverse	Point	Distance Points (po)	ΔP (poH ₂ O)	Température (°F)	Écoulement Cyclonique (°)	ΔP (poH ₂ O)	Température (°F)	Écoulement Cyclonique (°)	ΔP (poH ₂ O)	Température (°F)	Écoulement Cyclonique (°)
7	7	1/8	27498	721							
(E_l)	2	8/4	2 7552	72,1							
,	η	1.3%	2, 2399	721					6.		
	7	1 6/2	2, 2037	72,1			17.		% CH4	53.8%	
			- 1	~					/		
7	7		2,6281	72,1							7
(62)	2		2 7700						PATIOS	50.2 1	Ms
\	87		2, 7839							- /	J
	5		2,4064								
			•	,							
2	7		2,5253	72,1							
(E3)	2		25788								
	η		2230								
	5	4	27277								
	10.00										
Technicien:	: HM							Date & Heure:	:03/11/	28 de 1	200
	//								1		1202

La dernière version de ce document est disponible sur le réseau (Z:\Formulaires\Stack)

CERTIFICATE OF CALIBRATION

CUSTOMER AND INSTRU	JMENT INFORMATION			
CUSTOMER NAME:	LOCATION:	CONTRACT No.:	ORDER No.:	CERTIFICATE No.:
WSP	ST-LAMBERT	2310160900	P101193CA00	CC231017-01
MANUFACTURER:	MODEL:	MNF SERIAL NUMBER:	CUSTOMER SEF	RIAL NUMBER:
EDINBURGH INSTRUMENTS	GUARDIAN NG	10063	N.A.	

CALIBRATION DATE:	RECOMMENDED CALIBRATION: YEARLY SERVICE
CALIBRATED: OCTOBER 17, 2023	DATE OF NEXT CALIBRATION: OCTOBER 17, 2024

CALIBRATION GAS TYPE	CONCENTRATION	As Found	As LEFT	ACCURACY	RESULT
(ZERO) NITROGEN, ULTRA HIGH PURITY	0.0 %VOL	0.3	0.0	+/- 2%	PASS
(SPAN) METHANE: 50.0 %VOL	50.0 %VOL	48.6	50.0	+/- 2%	PASS

AMBIENT CONDITIONS: 23.8. °C, 35.1 %RH

NOTE: In-Line FLOW: 950.9 cc/M, In-Line Pressure: -2017.62 Pa (-8.1 "H2O)

CALIBRATION GAS STANDARD INFORMATION:

(ZERO): NITROGEN, ULTRA HIGH PURITY 99.998%: CALIBRATION GAS STANDARD LOT NO.: 302-402814229-49 (SPAN): METHANE: 50.0 %VOL, BALANCE IN NITROGEN: CALIBRATION GAS STANDARD LOT NO.: 2-095-82

I, MARTIN HURTUBISE, TECHNICIAN AT DEMESA INC., CERTIFY THE ACCURACY OF THIS CALIBRATION CERTIFICATE. THE CALIBRATION WAS PERFORMED AS PER EDINBURGH INSTRUMENTS PROCEDURE No.1 - v06/16, Ver. 1.17

THE FOLLOWING INSTRUMENT HAS BEEN CALIBRATED USING GASES THAT ARE TRACEABLE TO N.I.S.T. STANDARDS. AFTER CALIBRATION, THE INSTRUMENTS WERE VERIFIED AND FOUND TO BE WITHIN THE ACCURACY STATED ABOVE.

SIGNATURE:

DATE:

OCTOBER 17, 2023

Demesa Inc. certifies the instrument referenced above has been inspected, repaired (if necessary), and calibrated by qualified personnel and was found to meet or exceed the manufacturer's specifications. The primary error source for this calibration is the accuracy of the gas. Gases are certified by the manufacturer at $\pm 1\%$ to $\pm 10\%$ by volume using gravimetric method of analysis against NIST traceable weights. All tests and calibration records, including the Certificate of Analysis for each gas used in this calibration are maintained at Demesa Inc. This certificate may not be reproduced except in full, without the written approval of Demesa Inc.

DEMESA INC. * 458 MORDEN ROAD * OAKVILLE, ON L6K 3W4 * TELEPHONE: 905-842-6985 * WEBSITE: WWW.DEMESA.CA

Annexe 12 – Plan d'arrangement général des installations
Déjà fourni
Gabarit de rapport de projet de valorisation et de destruction de méthane provenant d'un lieu