
Ministère du Développement durable, de l'Environnement et des Parcs

Évaluation de la qualité des eaux souterraines et de surface au lieu d'enfouissement sanitaire de Dépôt Rive-Nord inc., à Saint-Thomas

N° 016932

Novembre 2005

1.	INTRODUCTION	1
		3 3
	MÉTHODOLOGIE ET TRAVAUX RÉALISÉS. 3.1 Revue et analyse des données historiques. 3.2 Échantillonnage	5
4.	, ,	9 9 13 13 14
5.	ASPECTS HYDROGÉOCHIMIQUES 5.1 Sélection des paramètres indicateurs 5.2 Bruit de fond de la qualité des eaux souterraines 5.3 Distribution spatiale de la contamination 5.4 Évolution du panache de contamination de l'eau souterraine 5.4.1 Généralités 5.4.2 Évolution par secteur 5.4.3 Migration du panache de contamination 5.5 Évolution de la qualité de l'eau de la rivière St-Joseph	20 21 22 23 23 25
	ASPECTS HYDROGÉOLOGIQUES	28 28 28 29 29 29

6.2.4	Estimation du potentiel aquifère	30
6.3 Ir	npact sur la nappe du pompage et de l'interception des précipitations	31
6.3.1	Concept d'enfouissement	31
6.3.2	Commentaires sur l'étude de modélisation	31
6.3.3	Commentaires sur l'évaluation des impacts	32
7. DISCU	ISSION SUR LE POTENTIEL DE CONTAMINATION	33
7.1 G	ualité des eaux souterraines et de surface	33
7.2 lr	npacts sur le régime d'écoulement des eaux souterraines	35
8. CONC	LUSIONS	37
9. RÉFÉ	RENCES	39
ANI	NEXES	

LISTE DES TABLEAUX

Tableau 3-1	Sites échantillonnés et programme analytique	8
Tableau 4-1	Résultats des analyses chimiques des échantillons d'eau souterraine	.10
Tableau 4-2	Résultats des analyses chimiques des échantillons d'eau de surface	.15
Tableau 4-3	Résultats des analyses chimiques des échantillons d'eau des résidences privé	
Tableau 4-4	Résultats des contrôles analytiques	
Tableau 7-1	Concentrations estimées dans les résurgences selon le facteur de dilution	.36

LISTE DES FIGURES

Figure 2.1	Localisation générale du site à l'étude
Figure 2.2	Secteur du lieu d'enfouissement sanitaire de St-Thomas
Figure 3.1	Localisation des sites d'échantillonnage (août 2005)
Figure 5.1	Distribution spatiale des concentrations en chlorures, DCO, fer et manganèse
Figure 5.2	Distribution spatiale des concentrations en azote ammoniacal, nitrates et nitrites sulfates et sulfures.
Figure 5.3	Évolution de la distribution spatiale des concentrations en chlorures entre 1993 et 2005.
Figure 6.1	Distribution spatiale des épaisseurs des dépôts granulaires de sable en surface

iii

LISTE DES ANNEXES

ANNEXE 1	Caractéristiques des forages et des puits
ANNEXE 2	Certificats d'analyse chimique
ANNEXE 3	Bordereau de transmission des échantillons
ANNEXE 4	Données historiques sur la qualité des eaux
ANNEXE 5	Graphiques de l'évolution des concentrations des paramètres indicateurs
ANNEXE 6	Statistiques des concentrations des paramètres indicateurs

1. <u>INTRODUCTION</u>

1.1 Contexte de l'étude

La compagnie Dépôt Rive-Nord inc. (DRN) (antérieurement Services sanitaires R.S. inc.) exploite depuis plusieurs années à Saint-Thomas et Sainte-Geneviève-de-Berthier un lieu d'enfouissement sanitaire (LES). Ce site est aménagé sur le principe d'atténuation naturelle. Depuis le début des années 1990, DRN assure un suivi de la qualité des eaux de surface et souterraine en périphérie du LES.

Le site est sur le point d'atteindre sa capacité d'enfouissement autorisée et en ce sens, des démarches ont été entreprises auprès du Ministère du Développement durable, de l'Environnement et des Parcs (MDDEP) afin d'agrandir le site d'enfouissement. La compagnie propose donc d'aménager une nouvelle cellule d'enfouissement sanitaire sur la base des caractéristiques d'un lieu d'enfouissement technique (LET) et de réhabiliter certaines des cellules du lieu qu'elle exploite. L'aménagement proposé est fonction des exigences du nouveau Règlement sur l'enfouissement et l'incinération des matières résiduelles (REIMR).

Le 13 avril 2005, un décret d'urgence a été délivré en faveur de Dépôt Rive-Nord inc. pour poursuivre l'exploitation du site actuel en surélévation. Pour ce faire, la cellule 3 avait été munie à l'automne 2004 d'un écran périphérique étanche. Le MDDEP a demandé par la même occasion la réalisation d'une étude indépendante sur la qualité des eaux souterraines et des eaux de surface de la rivière Saint-Joseph, qui coule à proximité du lieu d'enfouissement sanitaire. Il est permis de croire que l'ensemble des données du suivi environnemental ainsi que les résultats d'un nouvel échantillonnage permettront de vérifier l'état actuel de la qualité de l'eau de la rivière St-Joseph ainsi que des eaux souterraines.

1.2 Mandat et objectifs

La réalisation d'une étude indépendante, tout comme les autres exigences imposées à DRN, vise à répondre à une même préoccupation, soit de s'assurer que le lieu d'enfouissement sanitaire de DRN ne constitue pas une menace pour la population et pour l'environnement. Ainsi, le mandat pour la réalisation de l'étude indépendante a été accordé par DRN, à la demande du MDDEP, à M. Denis Isabel ing., Ph.D., ingénieur hydrogéologue québécois rattaché à la firme SNC-Lavalin inc. (SLI). Les modalités de l'étude ont été déterminées par le MDDEP en consultation avec le ministère de la Santé et des Services sociaux et les municipalités de Lanoraie et de Sainte-Geneviève-de-Berthier.

Plus spécifiquement, les objectifs du mandat de l'étude indépendante consistent à :

- valider les résultats disponibles sur la qualité de l'eau souterraine;
- évaluer la migration de la contamination vers la rivière St-Joseph;
- évaluer l'impact de la migration des contaminants sur la qualité de l'eau de la rivière St-Joseph;
- expliquer la présence, le maintien et la configuration du dôme piézométrique localisés dans le secteur du centre de compostage;
- analyser les résultats de la nouvelle campagne d'échantillonnage du point de vue absolu et du point de vue évolutif avec les autres campagnes;

- discuter et conclure sur la qualité des eaux de surface et souterraine et préciser l'impact de la migration des contaminants sur la qualité de l'eau de la rivière St-Joseph et des puits privés en périphérie;
- valider les calculs du promoteur et, s'il y a lieu, estimer l'ampleur prévue de l'abaissement de la nappe causé par le pompage au site et par l'interception des eaux de précipitations;
- donner un avis critique sur le potentiel aquifère en fonction des résultats de la modélisation et des essais de pompage.

Ce rapport technique tente donc de répondre aux objectifs énumérés dans le devis technique produit par le MDDEP en intégrant les résultats de l'échantillonnage et des analyses chimiques de la présente campagne avec toute l'information recueillie antérieurement.

2. DESCRIPTION DE LA ZONE D'ÉTUDE

2.1 Localisation et description du secteur

Le lieu d'enfouissement sanitaire (LES) de DRN est situé dans la région de Lanaudière sur le territoire des municipalités de Saint-Thomas et de Sainte-Geneviève-de-Berthier à environ 75 km au nord-est de Montréal. Les cellules couvrent une superficie d'environ 0,66 km² sur une superficie totale de 7,5 km² pour la propriété de DRN. Le site est limité à l'est par le chemin du Rang Bardochette, au sud par la rivière St-Joseph, à l'ouest par le chemin du Rang St-Joseph, au nord-ouest par le chemin du Rang Ste-Philomène.

On retrouve uniquement les résidences privées sur les chemins des rangs Bardochette, des Cascades et Ste-Philomène. Certaines d'entre elles sont occupées à l'année longue, alors que d'autres ne servent que de chalets. Il n'y a aucun aqueduc municipal desservant les résidences; ces dernières sont donc approvisionnées par des puits à petits débits interceptant les eaux souterraines dans l'aquifère de surface des dépôts de sable.

On accède au site à partir de Montréal par la sortie 141 de l'autoroute 40 *est* et par la sortie 144 de l'autoroute 40 *ouest* via les route 158 *est*, 138 *sud* et le chemin du Rang Ste-Philomène. La figure 2.1 présente la localisation du site.

2.2 Cadre physiographique

Le lieu d'enfouissement sanitaire opéré par DRN se trouve dans la région physiographique des basses terres du Saint-Laurent. La topographie y est très plate avec des élévations variant sur le site entre 15 et 35 m au-dessus du niveau moyen de la mer.

Le secteur fait partie du bassin versant du Fleuve St-Laurent. Deux petites rivières limitent le site, soit la rivière Chaloupe au *nord*, et la rivière St-Joseph au *sud* du site qui s'écoulent toutes deux vers le fleuve St-Laurent situé à l'est.

2.3 Cadre géologique et hydrogéologique

L'examen des rapports géologiques régionaux et des études fournies par DRN a permis de camper le contexte géologique et hydrogéologique du site à l'étude. La géologie des dépôts meubles dans la région à l'étude est constituée principalement en surface de dépôts alluvionnaires de nature sableuse et silteuse d'épaisseurs comprises entre 5 et 20 m. Sous cette première couche, on rencontre une zone de transition vers les dépôts marins sous-jacents. Cette zone est constituée d'une séquence stratifiée de lits d'argile, de silt et de sable et a une épaisseur variant entre 10 et 20 m. On note ensuite la présence d'un horizon de silt de moins de 25 m d'épaisseur. Les dépôts marins sous-jacents sont formés principalement d'une argile silteuse qui possède une épaisseur comprise entre 35 et 45 m. Finalement, tous ces dépôts reposent sur un till recouvrant le socle rocheux, en l'occurrence les shales d'Utica. L'annexe 1 présente un tableau sommaire des caractéristiques des forages et des puits réalisés sur le site.

L'unité aquifère principale présente sur le site est ainsi formée des dépôts de sable alluvionnaire en surface et constitue un aquifère phréatique (nappe libre). La profondeur du

niveau d'eau est sub-affleurante et peut aller jusqu'à 7 m de profondeur sous la surface du sol, et occasionnellement plus selon la topographie du secteur. Les valeurs de conductivité hydraulique estimées dans ces dépôts varient entre 10⁻⁵ et 10⁻⁴ m/s pour les dix premiers mètres. Les valeurs de conductivité hydraulique diminuent et sont de l'ordre de 10⁻⁶ m/s pour les dix mètres suivants. L'unité aquifère de sable est présentement exploitée pour l'approvisionnement en eau potable par de nombreux puits privés (puits de surface et pointes filtrantes) situés en périphérie de la propriété de DRN. La couche de transition sous-jacente aux dépôts de sable, de nature moins perméable, pourrait être qualifiée d'aquitard, tandis que les couches de silt et d'argile marine silteuse peuvent être qualifiées d'aquicludes. On observe donc une diminution de la perméabilité des dépôts avec l'augmentation de la profondeur.

Un autre système aquifère régional serait constitué des horizons fracturés des formations rocheuses du shale d'Utica que l'on retrouve plus en profondeur. Les débits sont en général assez faibles dans ce type de roche et la qualité de l'eau peut être problématique. Cet aquifère ne semble pas être exploité à proximité du site.

2.4 Description du lieu d'enfouissement

Le lieu d'enfouissement opéré par DRN est constitué de 5 cellules d'enfouissement sanitaire en surélévation et sans imperméabilisation : la cellule 1; les cellules 2A, 2B et 2C; et la cellule 3. Les cellules 1, 2A, 2B et 2C couvrent respectivement des surfaces de 257 600, 65 860, 80 367, 89 900 et 262 430 m². La cellule 1 a été opérée à partir des années 1970 jusqu'à 1991, puis de 1995 à 1997; les cellules 2A et 2B de 1991 à 1995, puis de 1997 à 1998; et la cellule 2C de 1998 à 2000. La cellule 3 a été opérée depuis 2000 selon le même mode, mais un mur étanche enfoui a été installé à l'été 2004 en périphérie de la cellule avec un système de puits de pompage à l'intérieur de cette dernière. Ce mur souterrain est composé de matériaux peu perméables de sol-bentonite et s'étend en profondeur jusqu'à la couche d'argile-silteuse sous-jacente au dépôt de sable.

L'aménagement proposé pour l'agrandissement du site et sa transformation en LET consistera à aménager un mur étanche similaire tout autour des futures cellules d'enfouissement. Le mur sera assez profond pour atteindre la couche d'argile silteuse et un système de contrôle hydraulique du lixiviat sera installé. L'agrandissement proposé est conçu en fonction des exigences du nouveau Règlement sur l'enfouissement et l'incinération des matières résiduelles (REIMR).

On retrouve également sur le site un centre de compostage qui traite à la fois des résidus verts et des boues agroalimentaires. Un système de traitement des boues de fosses septiques est aussi présent sur le site. Ce denier utilise le procédé DAB et est muni d'une lagune d'infiltration. Le système a été mis en opération en 1992

On peut voir sur la figure 2.2 la localisation des cellules d'enfouissement et les autres installations du LES.

3. <u>MÉTHODOLOGIE ET TRAVAUX RÉALISÉS</u>

Les objectifs généraux de l'étude étant de statuer sur l'évolution de la qualité des eaux souterraines et de celles de la rivière St-Joseph ainsi que d'étudier les impacts de l'opération du site sur le régime d'écoulement des eaux souterraines, il a été nécessaire d'examiner et d'intégrer toutes les données antérieures disponibles en plus d'évaluer le contexte physique de la zone d'étude. Les travaux de terrain ont été effectués conformément aux exigences du devis technique préparé par le MDDEP afin d'évaluer la qualité actuelle des eaux de surface et souterraines. Ces travaux sont décrits dans les sections qui suivent.

3.1 Revue et analyse des données historiques

Une revue détaillée et l'analyse de l'information disponible ont été effectuées dans le cadre de la présente étude. Les principaux documents consultés sont cités dans la section des références à la fin du présent rapport.

L'information disponible sur support numérique a été structurée et intégrée dans une base de données associée à un système d'information géographique (SIG) afin de faciliter l'analyse spatiale et temporelle des données.

En plus de ces rapports, certains des documents présentés lors des audiences du Bureau d'audiences publiques sur l'environnement (BAPE) ont été consultés et sont disponibles sur le site *internet* du BAPE en rapport au projet. Ces documents sont aussi cités dans la section des références à la fin du rapport.

3.2 <u>Échantillonnage</u>

3.2.1 Généralités

Les travaux de terrain ont consisté à prélever des échantillons d'eau souterraine, d'eau de surface de la rivière St-Joseph, et d'eau provenant des puits de résidences privées. Tous les sites d'échantillonnage spécifiés dans le devis technique produit par le MDDEP ont été échantillonnés dans le cadre de la présente campagne. C'est donc un total de 32 puits d'observation, 4 sites d'échantillonnage le long de la rivière St-Joseph et 5 puits de résidences privées, qui ont été échantillonnés entre le 16 et le 26 août inclusivement. À noter que tous les puits interceptent l'aquifère de sable près de la surface. De plus, un échantillon du lixiviat a été prélevé pour analyse. La localisation des sites échantillonnés est présentée à la figure 3.1.

L'échantillonnage a été effectué selon les règles de l'art par un technicien de SLI, M. Michel Soupras. Les travaux d'échantillonnage se sont déroulés en la présence d'au moins un représentant technique du MDDEP, soit M. Claude Tétreault et/ou M. Yvan Bousquet. Mme Mélanie Raynaud de la firme Donat Bilodeau (représentant les municipalités concernées) et M. Claude Robitaille de Tecsult (représentant DRN) étaient également présents lors de l'échantillonnage.

Tous les échantillons ont été prélevés dans des contenants propres appropriés, avec préservatifs si requis, fournis par le laboratoire analytique *Bodycote inc* situé à Pointe-Claire. Les échantillons ont été conservés au frais dans des glacières pour leur transport le jour même au laboratoire analytique. Un échantillon a été envoyé au laboratoire *Maxxam Analytique* de Lachine pour un contrôle inter-laboratoire.

3.2.2 Eau souterraine

L'échantillonnage des puits d'observation a été effectué du 16 au 23 août inclusivement à l'aide des systèmes de purge et d'échantillonnage waterra dédiés et déjà présents dans chaque puits. Tous les puits ont d'abord été purgés d'un volume correspondant au minimum à trois fois le volume d'eau contenu dans le puits et dans le massif filtrant installé autour de la crépine. La température de l'eau et la conductivité électrique ont été mesurées régulièrement lors de la purge. Seuls les échantillons destinés à l'analyse des métaux dissous ont été filtrés sur place pour l'échantillonnage. L'eau de purge a été rejetée sur le sol avec l'autorisation du MDDEP.

À l'exception de la première journée de la campagne, l'échantillonnage a été réalisé le lendemain de la purge. Dans le cas de la première journée, les puits ont été échantillonnés le jour même après avoir permis un temps de récupération d'au moins 2 heures pour permettre le retour des conditions d'équilibre dans le puits. De plus, un échantillon de contrôle a été prélevé le lendemain pour vérifier la constance des paramètres volatils entre les 2 séquences d'échantillonnage. Les couvercles des puits ont été verrouillés entre la purge et l'échantillonnage.

3.2.3 Eau de surface

Dans le cadre de la même campagne, l'eau de la rivière St-Joseph a été échantillonnée le 24 août à 4 endroits situés en amont et en aval du site, à des points qui font déjà l'objet d'un suivi environnemental. Les échantillons ont été prélevés à l'aide de contenants propres dédiés à chaque site de prélèvement. Préalablement à la prise de l'échantillon, ces contenants ont été rincés à multiples reprises avec l'eau de la rivière à l'endroit échantillonné.

3.2.4 Puits privés

Des échantillons d'eau provenant de 5 puits de résidences privées situées en périphérie du site ont été prélevés le 25 août. L'échantillonnage a été effectué après avoir laissé s'écouler l'eau du robinet durant une période suffisamment longue pour permettre la stabilisation de la température et de la conductivité électrique. Ceci avait pour but d'éviter de prélever un échantillon d'eau stagnante et d'assurer l'obtention d'un échantillon d'eau plus «fraîche» du puits de la résidence. Les échantillons ont été prélevés à même le robinet après s'être assuré que la résidence n'était pas équipée d'un système de traitement d'eau.

3.3 **Programme analytique**

Les échantillons d'eau prélevés dans le cadre de la présente campagne ont été analysés pour les différents paramètres physico-chimique et bactériologiques spécifiés au devis d'échantillonnage préparé par le MDDEP. Le programme analytique variait en fonction de la nature de l'eau échantillonnée (eau souterraine, de surface, eau potable). Le tableau 3.1 précise l'identification des sites échantillonnés et indique le nombre et la nature des analyses effectuées. Les échantillons qui ont été analysés pour les composés organiques volatils (COV) ont été sélectionnés sur la base de leur concentration élevée en chlorures, mesurées antérieurement, qui constitue habituellement le signe d'une contamination potentielle par les lixiviats de LES.

Également, comme mesures d'assurance et de contrôle de la qualité des résultats d'analyse chimique, plusieurs échantillons ont été prélevés en double ainsi qu'un blanc de terrain et de ransport. Un échantillon a aussi été analysé dans un autre laboratoire.

Tableau 3-1. Sites échantillonnés et programme analytique

Site d'échantillonnage	Paramètres	Détails	Quantité
Eau souterraine:			
P-9, P-14, P-15, P-24, P-30, P-32, P-33-A, P-33-B, P-33-C, P-34-A, P-34-B, P-34-C, P-35-A, P-35-B, P-35-C, P-39, P-42, P-50-R, P-51, P-64, P-65, P-66, P-68, P-407, P-408, P-409, P-410, P-411, P-412, P-413, F-308-A, F-311-A	ammoniacal, carbonates, cyanures totaux, As, Hg, B, Cd, Ca, Cl, Cr, Cu, Fe, Mg, Mn, Ni, Pb, K, Na, SO ₄ , S ² , Zn, nitrates et nitrites, phénols, DCO, DBO ₅ , coliformes fécaux et totaux,	32 puits d'observation 3 duplicata 1 blanc de terrain 1 eau de purge 1 lixiviat	38
P-33-B, P-34-C, P-411, P-42, P-51	Composés organiques volatils (COV)	5 puits d'observation présentant une contamination élevée en chlorures 3 duplicata 1 lixiviat	9
Eau des puits d'eau potable: 693 Cascades, 140 Bardochette, 2180 St-Albert, 511 Ste-Philoméne, 430 Ste-Philomène	bromates, Cd, chloramines, Cr total, cyanures totaux, fluorures, nitrates et nitrites, nitrites, Cu, Fe, Cl, Ni, Zn, Pb, Se, U, SO4-, coliformes fécaux, coliformes totaux, <i>E. coli</i> , bactéries entérocoques, virus coliphages, colonies atypiques, BHAA 35°C, composés phénoliques, sulfures totaux, huiles et graisses DCO, DBO ₅	5 résidences : les résidences 2076 St- Albert. et 180 Bardo- chette ont été rempla- cées par 2180 St-Albert et 140 Bardochette, respectivement, puisque les premières sont considérées comme des chalets et leur puits n'était pas actionné régulièrement. 1 duplicata	6
Eau de la rivière: S-1 S-2 S-3 S-4	As, Hg, B, Cd, Ca, Cl, Cr, Cu, cyanures totaux, Fe, Ni, Pb, Zn, nitrates et nitrites, azote ammoniacale, SO ₄ -, S ² -, DCO, DBO ₅ , coliformes fécaux et totaux, phénols, huiles et graisses	Sites suivis 1 duplicata	5

4. PRÉSENTATION DES RÉSULTATS ANALYTIQUES

Les résultats de toutes les analyses chimiques des échantillons d'eau prélevés lors de la présente campagne d'échantillonnage sont présentés aux tableaux 4.1 à 4.3, alors que les certificats d'analyse chimique sont joints à l'annexe 2. Les sections qui suivent commentent les résultats analytiques.

4.1 Eau souterraine

Les résultats des analyses chimiques des échantillons d'eau prélevés dans les puits d'observation lors de la présente campagne d'échantillonnage sont présentés au tableau 4.1. Pour le secteur des plus anciennes cellules du site (1, 2A, 2B et 2C), il n'existe pas dans le règlement de critères de qualité pour l'eau souterraine mais seulement pour les résurgences. En absence de normes réglementaires applicables aux eaux souterraines, les résultats des analyses chimiques ont été comparés à titre indicatif aux normes du nouveau Règlement sur l'enfouissement et l'incinération des matières résiduelles (REIMR) qui contient des critères pour l'eau souterraine, aux critères pour les résurgences du Règlement sur les déchets solides (RDS), et aux critères de la Politique de protection des sols et de réhabilitation des terrains contaminés (PPSRTC) pour les eaux souterraines pour les COV notamment. Seuls les dépassements en fonction des critères du REIMR sont indiqués dans le tableau pour ne pas l'alourdir inutilement, mais tous les dépassements aux règlements mentionnés sont discutés dans le texte ci-après.

4.1.1 Paramètres inorganiques

La majorité des échantillons d'eau souterraine prélevés dans le cadre de la présente campagne d'échantillonnage ont présenté des concentrations élevées par rapport au bruit de fond pour quelques paramètres inorganiques. Plusieurs de ces échantillons dépassaient même pour quelques paramètres (Fe, Mn, Cl, Na, Ni, azote ammoniacal, sulfures, DCO) les règlements considérés à titre indicatif dans cette étude. D'autres éléments majeurs (sulfates, calcium, potassium, magnésium et DBO₅) présentant des concentrations importantes, mais moins problématiques, présentaient des concentrations qui variaient souvent en concordance avec les concentrations observées des paramètres cités précédemment.

Pour plusieurs des paramètres inorganiques restants, les valeurs sont généralement faibles et du même ordre de grandeur dans tous les puits d'observation. On note toutefois les exceptions suivantes qui présentent pour quelques puits d'observation des valeurs sporadiques plus élevées par endroits, notamment pour les nitrates et nitrites (P-9, P-32, P-34-A, P-413), l'arsenic (P-14, P-409 et P-412), le bore (P-14, P-34-B, P-34-C, P-410 et P-412), le chrome (P-14, P-15, P-33-B, P-409, P-411 et P-413), le cuivre (P-66 et P-409) et le zinc (P-32 et P-407).

REIMR

Tel que mentionné auparavant, une comparaison des résultats d'analyse a été réalisée à titre indicatif avec les critères du REIMR. Les principales observations sur les concentrations des paramètres inorganiques dans les eaux souterraines par rapport aux critères du REIMR sont :

 Tableau 4.1: Résultats des analyses chimiques des échantillons d'eau souterraine prélevés en août 2005

Paramete Change Paramete Paramet	< 20 < 20 < 20 < 20 < 20 30 < 20 280 70500 240000 714000 49400 2000 2300 < 300 49400 20 430 1000 3700 < 3000 < 3000 < 3000 < 3000 < 3900 < 3000 < 3000 < 3000 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 11 1 13 300 < 50 160 30 380 < 1 < 1 < 1 < 1 < 196000 20000 345000 25900 12 5 12 6 12 2 1 1 1010 18800 12400 21600 44500 44800 2800 87100 3851 945 1600 1850	 < 20 1420 45100 40100 < 20 < 3000 320 < 40 1 29000 4000 1 < 20 < 1 1 < 55700 14 6
Parameter Universe	< 20 < 20 < 20 < 20 < 20 30 < 20 280 70500 240000 714000 349400 2000 2300 < 300 49400 20 430 1000 37000 589 799 945 1830 < 40 < 40 < 40 101000 146000 215000 173000 8000 8000 10000 13000 5 1 1 1 1 250 160 30 380 < 1 <1 <1 <1 196000 200000 345000 259000 12 5 12 6 12 2 1 1 10100 18800 12400 21600 44500 41800 62800 87100 851 945 1600 0,2 0,2	 < 20 1420 45100 40100 < 20 < 3000 320 < 40 1 29000 4000 1 < 20 < 1 1 < 55700 14 6
The Property State of N. 191, 190, 190, 190, 190, 190, 190, 190,	< 20 < 20 < 20 < 20 < 20 30 < 20 280 70500 240000 714000 349400 2000 2300 < 300 49400 20 430 1000 37000 589 799 945 1830 < 40 < 40 < 40 101000 146000 215000 173000 8000 8000 10000 13000 5 1 1 1 1 250 160 30 380 < 1 <1 <1 <1 196000 200000 345000 259000 12 5 12 6 12 2 1 1 10100 18800 12400 21600 44500 41800 62800 87100 851 945 1600 0,2 0,2	 < 20 1420 45100 40100 < 20 < 3000 320 < 40 129000 49000 1 < 20 < 1 < 55700 14 6
Printing A further on N	< 20 30 < 20 280 70500 240000 74000 494000 2000 2300 < 300	1420 45100 40100 < 20 < 3000 320 < 40 129000 4000 11 < 20 < 1 55700 14 6
Circures pj. Circ	70500 240000 714000 494000 2000 2300 < 300	45100 40100 < 20 < 3000 320 < 40 129000 1 < 20 < 1 55700 14 6
Subseries SOA	2000 2300 < 300 49400 20 430 1000 37000 <3000	40100 < 20 < 3000 320 < 40 129000 4000 1 < 20 < 1 55700 14 6
Acta summorated in N 1971 150	<3000	< 3000 320 < 40 129000 4000 1 < 20 < 1 55700 14 6
Conduction Profession Pro	589 799 945 1830 < 40	320 < 40 129000 4000 1 < 20 < 1 55700 14 6
Salures (en HzS) PgiL 500 200	< 40	< 40 129000 4000 1 < 20 < 1 55700 14 6
DOC	101000 146000 215000 173000 8000 8000 10000 13000 5 1 1 13 250 160 30 380 <1	129000 4000 1 < 20 < 1 55700 14
BOS 1951	8000 8000 10000 13000 5 1 1 13 250 160 30 380 < 1	4000 1 < 20 < 1 55700 14 6
Methous Margine Soluble	5 1 1 13 250 160 30 380 <1	1 < 20 < 1 55700 14 6
Bore Soluble	< 1	< 1 55700 14 6
Cademian Soluble pgl. 50 50 73 17700 21000 18500 24000 411000 2900 33000 58000 8000 185000 18500 27700 11000 2770 110000 2770 110000 2770 110000 2770 110000 2770 11000 2770 11000 2770 110000 2770 11000 2770 11000 2770 11000 2770 11000 2770 11000 2770 110000 2770 11000 2770 1	196000 200000 345000 259000 12 5 12 6 12 2 1 1 10100 18800 12400 21600 44500 62800 87100 87100 851 945 1600 1850 < 0,2	55700 14 6
Chrome Soluble pgl. 50 500 c1 6 50 1 11 10 c1 1 1 1 1 1 1 1 1	12 5 12 6 12 2 1 1 10100 18800 12400 21600 44500 41800 62800 87100 851 945 1600 1850 <0,2	14 6
Columb Soluble	12 2 1 1 10100 18800 12400 21600 44500 44800 62800 87100 851 945 1600 1850 < 0,2 < 0,2 < 0,2 < 0,2	6
Fer Soluble	10100 18800 12400 21600 44500 41800 62800 87100 851 945 1600 1850 < 0,2	6
Magnesium Soluble	44500 41800 62800 87100 851 945 1600 1850 < 0,2	
Marganese Soluble	851 945 1600 1850 < 0,2 < 0,2 0,2 < 0,2	780
Mercure Soluble		221
Nickel Soluble Micro Mic		
Plomb Soluble		7
Sodium Soluble 19/L 200000 2400 108000 15100 2400 15000 15100 2400 15000 15100 2400 15000 15100 2400 15100 2400 15100 2400 15100 2400 15100 2400 15100 2400 15100 2400 15100 2400 25100	1 1 <1 <1	1
Zinc Soluble Microb. Coliformes fécaux Thref100ml O Coliformes fécaux UFC/100ml) Norber100ml O Coliformes fécaux UFC/100ml	3400 3300 3800 50100	
Microb. Coliformes fécaux* Note Coliformes totaux (UFC/100ml) Note Coliformes totaux	8700 81000 104000 272000	
Coliformes totaux (UFC/100ml) Nore/100ml 2400 < 10	30 20 <10 20	10
C10-C50 Hydrocarbures pétroliers C10-C50 Hydrocarbures hydrocarbures pétroliers C10-C50 Hydrocarbures hydrocarbures pétroliers C10-C50 Hydrocarbures hydrocarbur	< 100 200 < 10 < 10 2900 12000 40 < 10	< 100 < 1000
HAP Naphtalène µg/L Phénois (2,5+2,6)-Dichlorophénol µg/L Q < 0,3 < 0,3 < 0,5 < 0,3 < 0,5 < 0,3 < 0,5 < 0,3 < 0,3 < 0,5 < 0,3 < 0,3 < 0,3 < 0,3 < 0,5 < 0,3 < 0,3 < 0,5 < 0,3 < 0,3 < 0,5 < 0,3 < 0,3 < 0,5 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,5 < 0,3 < 0,3 < 0,5 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,5 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,	100 100 < 100 < 100	
Phénois (2,5+2,6)-Dichlorophénol µg/L	< 0.1 -	- 100
2,3,4,6-Tétrachlorophénol yg/L 2,3,4,6-Tétrachlorophénol yg/L 2,3,4,6-Tétrachlorophénol yg/L 2,3,4,6-Tétrachlorophénol yg/L 2,3,4,6-Tétrachlorophénol yg/L 2,3,4,6-Tétrachlorophénol yg/L 2,3,6-Tétrachlorophénol 2,3,6-Tétrachlorophénol 2,3,6-Tétrachlorophénol 2,3,6-Tétrachlorophénol 2,3,6-Tétrachlorophénol 2,3,6-Tétrachlorophénol 2,3,6-Tétrachlorophénol 2,		< 0,5
2,3,4,6-fitrachlorophénol yg/L 2,3,4,6-fitrachlorophénol yg/L 2,3,4,6-fitrachlorophénol yg/L 2,3,4,6-fitrachlorophénol yg/L 2,3,4,6-fitrachlorophénol yg/L 2,3,6,6-fitrachlorophénol yg/L 2,3,6,6,6-fitrachlorophénol yg/L 2,3,6,6,6-fitrachlorophénol yg/L 2,3,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,	< 0,3 < 0,3 < 0,3 < 0,3	< 0,5
2,3,5,6-Tétrachlorophénol µg/L 2,3,6-Tíchlorophénol 2,3,6-Tí	< 0,3 < 0,3 < 0,3 < 0,3	< 0,5
2,3,5-Trichlorophénol µg/L < 0,3 < 0,3 < 0,5 < 0,3 < 0,5 < 0,3 < 0,5 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,5 < 0,3 < 0,5 < 0,3 < 0,5 < 0,3 < 0,5 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0	< 0,3 < 0,3 < 0,3 < 0,3	< 0,5
2,3,6-Trichlorophénol µg/L	< 0,3 < 0,3 < 0,3 < 0,3	< 0,5
2,3-Dichlorophénol µg/L 4	<pre>< 0,3</pre>	< 0,5 < 0.5
	<0.3 < 0.3 < 0.3 < 0.3	< 0.5
	<0,3 <0,3 <0,3 <0,3	< 0,5
2,4,6-trichlorophénol µg/L	< 0,3 < 0,3 < 0,3 < 0,3	< 0,5
2,4-Dichlorophénol µg/L 4,4-Dichlorophénol 4,5 4	< 0,3 < 0,3 < 0,3 < 0,3	< 0,5
2,4-Diméthylphénol µg/L	< 0,3 < 0,3 < 0,3 < 0,3	< 0,5
2,4-Dinitrophénol µg/L <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	< 10 < 10 < 10 < 10	< 17
2-Chlorophénol µg/L	< 0,3 < 0,3 < 0,3 < 0,3 < 10 < 10 < 10 < 10	< 0,5 < 17
2-Méthyl-4,6-dinitrophénol µg/L 2-Méthyl-4,6-dinitrophénol µg/L 2-Méthyl-4,6-dinitrophénol	<0,3 <0,3 <0,3 <0,3	< 0.5
3,4,5-Trichlorophénol µg/L	< 0.3 < 0.3 < 0.3 < 0.3	< 0.5
3,4-Dichlorophénol µg/L	< 0,3 < 0,3 < 0,3 < 0,3	< 0,5
3,5-dichlorophénol µg/L	< 0,3 < 0,3 < 0,3 < 0,3	< 0,5
3-Chlorophénol µg/L	< 0,3 < 0,3 < 0,3 < 0,3	< 0,5
4-Chlorophénol µg/L < 0,3 < 0,3 < 0,5 < 0,3 < 0,5 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,	< 0,3 < 0,3 < 0,3 < 0,3	< 0,5
4-Nitrophénol µg/L	<0,3 <0,3 <0,3 <0,3	< 0,5
	0,3 < 0,3 < 0,3 < 0,3 1,6 < 0,3 < 0,3 < 0,3	< 0,5 < 0.5
O-Crésol µg/L		< 0,5
Pertection pg/L		< 0,5
Phénol µg/L	12,7 < 0,3 < 0,3 < 0,3	< 0,5
Sommation des phénois chlorés µg/L 20		-
Sommation des phénols non-chlorés µg/L 20 - 88,1	12,7 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3 < 0,3	

Note 1: La limite de détection pour les coliformes fécaux a été mise à < 10 UFC/100 ml bien que le critère soit de 0 UFC/100 ml.

Tableau 4.1: Résultats des analyses chimiques des échantillons d'eau souterraine prélevés en août 2005 (suite)

					F-308A	F-311A	Lixivia	t P-09	P-14	P-15	P-24	P-30	P-32	P-33A	P-33B	P-33C	P-34A	P-34B	P-34C	P-35-A	P-35-B	P-35-C	P-39	P-42	P-50R	P-51	P-64	P-65	P-66	P-68	P-407	P-408	P-409	P-410 I	P-411	P-412	P-413
		İ	Ī	İ	İ	1																														$\overline{}$	
oupe Paramètre	Unités	REIMR	RDS	PPSRTC	2005-08-23	Bruit de fond 2005-08-23	2005-08-2	25 2005-08-18	2005-08-18	2005-08-16	2005-08-23	2005-08-23	2005-09-19	2005-08-16	2005-09-16	2005-08-16	2005-08-16	2005-08-16	2005-08-16	2005-08-16	2005-08-16	2005-08-16	2005-08-23	2005-08-23	2005-08-23	2005-08-23	2005-08-23	2005-08-16	2005-08-16	2005-08-18	2005-08-18	2005-08-17	2005-08-18	2005-08-18 20	05-08-16 3	2005-08-23	2005-08-
V 1,1,1,2-tétrachloroéthane		-		470		-	<8	2003-00-10	2003-00-10	2003-00-10	2000-00-23	2003-00-23	2003-00-10	2000-00-10	< 0,1	2003-00-10	2003-00-10	2003-00-10	< 0.1	-	-	2003-00-10	2003-00-23	< 0,1	-	< 0,1	2003-00-23	2003-00-10	2003-00-10	2003-00-10	2003-00-10	-	2003-00-10		< 0,1		2003-00-1
1,1,1-trichloroéthane	μg/L μg/l			2000		+ :	<8	+ -	-				-		< 0,1		-		< 0.1		-	-		< 0,1		< 0,1		-				-	-		< 0,1	-	-
1,1,2,2-tétrachloroéthane	μg/L μg/L		_	2000	-	-	<8	-	-	-	-	-	-	-	< 0,1	-	-	-	< 0,1	-	-	-		< 0,1	-	< 0,1	-	-	-	-	-	-	-		< 0,1	-	
1,1,2-trichloroéthane	μg/L			2400	-	-	<8	-	-	-	-	-	-	-	< 0,1	-	-	-	< 0,1	- 1	-	- 1	- 1	< 0,1	-	< 0,1	-	-	-	-	-	-	- 1		< 0,1	- 1	
1.1-dichloroéthane	μg/L				-	-	<8	-	-	-	-	-	-	-	< 0,1	-	-	-	< 0.1	-	-	-	-	< 0,1	-	< 0,1	-	-	-	-	-	-	-		< 0,1	-	
1,1-dichloroéthène	μg/L			320	-	-	<8	-	-	-	-	-	-	-	< 0,1	-	-	-	< 0,1	-	-	-	-	< 0,1	-	< 0,1	-	-	-	-	-	-	-		< 0,1	-	-
1,2,4-Triméthylbenzène	μg/L				-	-	<8	-	-	-	-	-	-	-	< 0,1	-	-	-	0,1	-	-	-	-	< 0,1	-	< 0,1	-	-	-	-	-	-	-	-	< 0,1	-	-
1,2-dibromoéthane	μg/L				-	-	<40	-	-	-	-	-	-	-	< 0,5	-	-	-	< 0,5	-	-	-	-	< 0,5	-	< 0,5	-	-	-	-	-	-	-	-	< 0,5	-	-
1,2-dichloroéthane	μg/L			9900	-	-	<8	-	-	-	-	-	-	-	< 0,1	-	-	-	< 0,1	-	-	-	-	< 0,1	-	< 0,1	-	-	-	-	-	-	-		< 0,1	-	-
1,2-Dichloroéthène (cis)	μg/L				-	-	<8	-	-	-	-	-	-	-	< 0,1	-	-	-	< 0,1	-	-	-	-	< 0,1	-	< 0,1	-	-	-	-	-	-	-		< 0,1	-	
1,2-dichloropropane	μg/L			2600	-	-	<8	-	-	-	-	-	-	-	< 0,1	-	-	-	< 0,1	-	-	-	-	< 0,1	-	< 0,1	-	-	-	-	-	-	-		< 0,1	-	
1,3,5-Triméthylbenzène	μg/L				-	-	<8	-	-	-	-	-	-	-	< 0,1	-	-	-	< 0,1	-	-	-	-	< 0,1	-	< 0,1	-	-	-	-	-	-	-		< 0,1	-	
1,3-dichloropropane	μg/L			5900	-	-	<8	-	-	-	-	-	-	-	< 0,1	-	-	-	< 0,1	-	-	-	-	< 0,1	-	< 0,1	-	-	-	-	-	-	-		< 0,1	-	
1,3-dichloropropène (cis)	μg/L			300		-	<8		-		- 0.4	- 0.4	- 0.4	-	< 0,1	-	-	-	< 0,1	-	-	- 0.4	-	< 0,1	-	< 0,1	-	- 0.4	- 0.4	-	- 0.4	- 0.4	-		< 0,1	-	
Benzène	μg/L	5		590	< 0,1	< 0,1	<8	< 0,1	1,6	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	2,4	1,9	0,3	0,5	1,1	< 0,1	< 0,1	< 0,1	0,1	< 0,1	< 0,1	0,2	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1		< 0,1	2,5	< 0,1
Bromochlorométhane	μg/L				-	<u> </u>	<8 <8	-	-	-	-	-	-	-	< 0,1	-	-	-	< 0,1	-	-	-	-	< 0,1	-	0,5		-	-	-	-	-	-		< 0,1	-	
Bromodichlorométhane Bromoforme	μg/L		_			-	<8	-	-	 	<u> </u>	-	-	<u> </u>	< 0,1	-	-	<u> </u>	< 0,1	-	-	-		< 0,1		< 0,1	-	-	-	-	-	-	-		< 0,1		<u> </u>
Bromométhane	μg/L				-	-	<8	+ -	-	1	-	-	-	-	< 0,1	-	- :	-	< 0,1	-	-	-		< 0,1		< 0,1		-	-						< 0,1		<u> </u>
Chloroéthane	μg/L μg/L		_		-	+ -	<40		+ :	-	H :		-		1,6	-	-	-	< 0,5		-	-	-	< 0,5		< 0,5		-		-	-				0,7	-	-
Chloroforme	μg/L		_	1800		-	<8	-	-	-	<u> </u>	-	-	.	< 0,1		-	-	< 0,1	-	-	-	-	0,4	-	< 0,1		-	-	-	-	-	-		< 0,1	-	
Chlorométhane	μg/L		_	1000	_	-	<40	-	-	-	-	-	-	-	< 0.5	-	-	-	< 0,5	-	-	-	-	< 0.5	-	< 0,5	-	-	-	-	-	-	-		< 0,5	-	
Chlorure de vinyle	μg/L			53000	-	-	<40	-	-	-	-	-	-	-	< 0,5	-	-	-	< 0,5	- 1	-	- 1	- 1	< 0,5	-	< 0,5	-	-	-	-	-	-	- 1		< 0,5	- 1	
Dibromochlorométhane	μg/L				-	-	<8	-	-	-	-	-	-	-	< 0.1	-	-	-	< 0.1	-	-	-	-	< 0.1	-	< 0.1	-	-	-	-	-	-	-		< 0.1	-	
Dichlorodifluorométhane	μg/L				-	-	<120	-	-	-	-	-	-	-	< 1,5	-	-	-	< 1,5	- 1	-	-	-	< 1,5	-	< 1,5	-	-	-	-	-	-	-	-	< 1,5	-	
Dichlorométhane	μg/L			13000	-	-	253	-	-	-	-	-	-	-	< 0,1	-	-	-	< 0,1	-	-	-	-	0,1	-	< 0,1	-	-	-	-	-	-	-	-	< 0,1	-	-
Éthylbenzène	μg/L	2,4		420	< 0,1	< 0,1	<8	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
Isopropyl benzène	μg/L				-	-	<8	-	-	-	-	-	-	-	< 0,1	-	-	-	0,1	-	-	-	-	< 0,1	-	< 0,1	-	-	-	-	-	-	-	-	< 0,1	-	-
m+p-Xylène	μg/L	300		820	-	-	<8	-	-	-	-	-	-	-	< 0,1	-	-	-	< 0,1	-	-	-	-	< 0,1	-	< 0,1	-	-	-	-	-	-	-		< 0,1	-	-
n-butylbenzène	μg/L				-	-	<8	-	-	-	-	-	-	-	< 0,1	-	-	-	< 0,1	-	-	-	-	< 0,1	-	< 0,1	-	-	-	-	-	-	-		< 0,1	-	-
n-Propyl benzène	μg/L				-	-	<8	-	-	-	-	-	-	-	< 0,1	-	-	-	< 0,1	-	-	-	-	< 0,1	-	< 0,1	-	-	-	-	-	-	-		< 0,1	-	
o-Xylène	μg/L	300		820	-	-	<8	-	-	-	-	-	-	-	< 0,1	-	-	-	< 0,1	-	-	-	-	< 0,1	-	< 0,1	-	-	-	-	-	-	-		< 0,1	-	
Styrène	µg/L			190	-	-	<8	-	-	-	-	-	-	-	< 0,1	-	-	-	< 0,1	-	-	-	-	< 0,1	-	< 0,1	-	-	-	-	-	-	-		< 0,1	-	
Tétrachloroéthène	μg/L			440	-	-	<8	-	-	-	-	-	-	-	< 0,1	-	-	-	< 0,1	-	-	-	-	< 0,1	-	< 0,1	-	-	-	-	-	-	-		< 0,1	-	
Tétrachlorure de carbone	μg/L	24	_	440 580	- 0.1	- 0.4	<8	- 0.1	- 0.4	- 0.1	- 0.4	- 0.4	- 0.1	- 0.4	< 0,1	- 0.4	0.4	- 0.4	< 0,1	- 0.4	- 0.4	- 0.4	- 0.4	< 0,1	0.1	< 0,1	- 0.4	- 0.4	- 0.4	- 0.4	-	- 0.4	-		< 0,1	- 0.4	
Toluène Trichloroéthène	µg/L	24	_	380	< 0,1	< 0,1	507 <8	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1 < 0,1	< 0,1	< 0,1	< 0,1	0,1	< 0,1	< 0,1	2,9	< 0,1	3,5		< 0,1	< 0,1	< 0,1
Trichlorofluorométhane	μg/L				-	-	<40	+ -	-	1	-	-	-	-	< 0,1	-	-	-	< 0,1	-	-	-		< 0,1		< 0,1		-							< 0,1		<u> </u>
Xylènes	μg/L μg/L				< 0,1	< 0,1		< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1		< 0,1	< 0,1	< 0,1	- 0,0	< 0,1	< 0,1	< 0,1	< 0,1	- 0,5	< 0,1	- 0,5	< 0,1	0,3	0,2	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1		< 0,1	< 0,1
1,1-dichloropropène	μg/L		_		- 0,1		<8							- 0,1	< 0,1	- 0,1			< 0,1					< 0,1		< 0,1	- 0,1	-	-		- 0,1				< 0,1		- 0,1
1,2,3-trichloropropane	μg/L		_		-	-	<40	-	-	-	-	-	-	-	< 0.5	-	-	-	< 0.5	-	-	-	-	< 0,5	-	< 0,5	-	-	-	-	-	-	-		< 0,5	-	
1,2-dibromo-3-chloropropane	μg/L				-	-	<120	-	-	-	-	-	-	-	< 1.5	-	-	-	< 1.5	-	-	-	-	< 1,5	-	< 1,5	-	-	-	-	-	-	-		< 1.5	-	
1,2-dichloroéthène (trans)	μg/L			300	-	-	<8	-	-	-	-	-	-	-	< 0,1	-	-	-	< 0,1	-	-	-	-	< 0,1	-	< 0,1	-	-	-	-	-	-	-	-	< 0,1	-	
1,3-dichloropropène (trans)	μg/L			300	-	-	<8	-	-	-	-	-	-	-	< 0,1	-	-	-	< 0,1	-	-	-	-	< 0,1	-	< 0,1	-	-	-	-	-	-	-		< 0,1	-	
2,2-dichloropropane	μg/L				-	-	<8	-	-	-	-	-	-	-	< 0,1	-	-	-	< 0,1	-	-	-	-	< 0,1	-	< 0,1	-	-	-	-	-	-	-	-	< 0,1	-	-
2-chloroéthyl vinyl éther	μg/L				-	-	<200	-	-	-	-	-	-	-	< 2,5	-	-	-	< 2,5	-	-	-	-	< 2,5	-	< 2,5	-	-	-	-	-	-	-	-	< 2,5	-	-
2-chlorotoluène	μg/L				-	-	<8	-	-	-	-	-	-	-	< 0,1	-	-	-	< 0,1	-	-	-	-	< 0,1	-	< 0,1	-	-	-	-	-	-	-		< 0,1	-	
4-chlorotoluène	μg/L					-	<8	-	-	-	-	-	-	-	< 0,1	-	-	-	< 0,1	-	-	-	-	< 0,1	-	< 0,1	-	-	-	-	-	-	-		< 0,1	-	
Bromobenzène	μg/L				-	-	<8	-	-	-	-	-	-	-	< 0,1	-	-	-	< 0,1	-	-	-	-	< 0,1	-	< 0,1	-	-	-	-	-	-	-		< 0,1	-	
Dibromométhane	μg/L				-	-	<8	+ -	-	-	-	-	-	-	< 0,1	-	-	-	< 0,1	-	-	-	-	< 0,1	-	< 0,1	-	-	-	-	-	-	-		< 0,1	-	
p-Isopropyl toluène	μg/L				-	-	<8	-	-	-	-	-	-	-	< 0,1	-	-	-	0,1	-	-	-	-	< 0,1	-	< 0,1	-	-	-	-	-	-	-		< 0,1	-	
sec-butylbenzène	μg/L				-	-	<8	-	-	-	-	-	-	-	< 0,1	-	-	-	< 0,1	-	-	-	-	< 0,1	-	< 0,1	-	-	-	-	-	-	-		< 0,1	-	
tert-butylbenzène	μg/L					+ -	<8	-	-	-	-	-	-	-	< 0,1	-	-	-	< 0,1	-	-	-	-	< 0,1	-	< 0,1	-	-	-	-	-	-	-		< 0,1	-	
1,2,3-trichlorobenzène	μg/L				-	-	<8	+	-	-	-	-	-	-	< 0,1	-		-	< 0,1	-	-	-	-	< 0,1	-	< 0,1		-	-	-	-	-			< 0,1		<u> </u>
1,2,4-trichlorobenzène	μg/L ug/l			70	H	+ :	<8 <8	-	-	-	-	-	-	-	< 0,1 < 0,1	-	-		< 0,1	-	-	-	-	< 0,1 < 0,1	-	< 0,1 < 0,1	-	-	-	-	-	-	-		< 0,1		_
1,3-dichlorobenzène	μg/L μg/l			15000			<8	+:							< 0,1		-	<u> </u>	< 0,1		-			< 0,1		< 0,1	-: $-$	-	-:-		-	-			< 0,1	-	-
1,4-dichlorobenzène	μg/L μg/l			110	-	<u> </u>	<8 <8	+:	+ :-			<u> </u>			< 0,1	— .	-	<u> </u>	0.9		-			< 0,1	-	< 0,1				— <u>:</u>					< 0,1		-
Chlorobenzène	μg/L μg/l			130	H :	+ :-	<8 <8	+ :	+ -	-	-	-	-	 	< 0,1	-	-		4,5			-		< 0,1		< 0,1		-	-		-	-			< 0,1		
Hexachlorobutadiène	μg/L ug/L			100	H .	+ -	<8	+ -	+	.	.	-	<u> </u>	.	< 0.1		-		< 0.1		-			< 0.1		< 0.1		-				-			< 0.1		
ji iczaci liulubulaulelie	µg/L				38 -		0								1 \ 0,1				< ∪, i	-	-	-		∨ ∪, i		∇ 0, 1		-	-			-	-	-	¬ ∪, ı		

un dépassement du critère pour le fer pour les puits P-14, P-15, P-33-A, P-33-B, P-33-C, P-34-A, P-34-B, P-34-C, P-39 P-42, P-50R, P-51, P-64, P-65, P-68 P-407, P-408, P-409, P410, P-411, P-412, P-413;

- Un dépassement pour le manganèse pour pratiquement tous les puits: P-9, P-14, P-15, P-24, P-30, P-33-A, P-33-B, P-33-C, P-34-A, P-34-B, P-34-C, P-35-A, P-35-B, P-35-C, P-39, P-42, P-50R, P-51, P-64, P-65, P-66, P-68 P-407, P-408, P-409, P410, P-411, P-412, P-413;
- on note également des dépassements pour les chlorures dans P-14, P-15, P-33-B, P-34-B, P-34-C, P-51, P-411, P-412;
- des dépassements pour le sodium et le nickel dans P-14 et P-412;
- des dépassements pour l'azote ammoniacal dans P-9, P-14, P-33-B, P-33-C, P-34-A, P-34-B, P-34-C, P-412; et
- des dépassements pour les sulfures dans P-14, P-35-B, P-39, P-50R, P-64, P-65, P-68, P-408.

RDS

Une comparaison à titre indicatif avec les critères du RDS indique quelques dépassements dans des puits pour la DCO (P-14, P15, P-33-B, P-33-C, P-39, P-50-R, P-64, P-407, P-409 à P-413), le fer (P-14, P15, P-33-A, P-33-B, P-34-C, P-410, P-412), la DBO $_5$ (P-50-R) et les coliformes totaux (P-407, P-409, P-410).

PPSRTC

Pour le PPSRTC, une comparaison à titre indicatif avec les critères ne démontre que deux dépassements, soit pour le cuivre (P-66 et P-409) et le zinc (P-407).

4.1.2 Paramètres organiques

Tel que mentionné précédemment, tous les échantillons d'eau souterraine ont été analysés pour les BTEX (benzène, toluène, éthylbenzène et xylènes), mais seulement quelques uns ont subi une analyse détaillée des composés organiques volatils (COV). La majorité des résultats d'analyse indique des valeurs sous le seuil de détection analytique. Toutefois, de faibles concentrations de COV ont été détectées, notamment pour : le benzène dans les puits P-14, P-33-B, P-33-C, P-34-A, P-34-B, P-34-C, P-51, P-410 et P-412; le toluène dans P-407 et P-409; les xylènes dans P-65 et P-66; le chloroéthane dans P-33-B et P-411; le chlorobenzène, le 1, 4-dichlorobenzène, le 1, 2-dichlorobenzène, le 1, 2, 4-triméthylbenzène, le isopropyl benzène et le p-isopropyl toluène dans P-34-C (les valeurs des 3 derniers se situant à la limite de détection); le chloroéthane dans P-34-C (les valeurs des 3 derniers se situant à la limite de détection); le chloroéthane dans P-411. Aucune concentration en chlorure de vinyle excédant la limite de détection analytique n'a été détectée parmi les 5 échantillons analysés. Mentionnons en terminant, à titre de comparaison additionnelle, que toutes les limites de détection et ces valeurs mesurées se trouvent sous les critères très restrictifs du Règlement sur l'eau potable.

Également, parmi les 32 puits échantillonnés, des phénols ont été détectés en faible quantité uniquement dans les puits d'observation P-33-C, P-50-R, P-64 et P-409. Les autres échantillons ont présenté des concentrations en phénols sous les niveaux de détection analytique (également, à titre de comparaison additionnelle, ces limites se trouvent sous les critères du Règlement sur l'eau potable).

Finalement, tous les échantillons ont présenté des concentrations en hydrocarbures C_{10} - C_{50} égales à la limite de détection ou sous la limite de détection analytique.

REIMR

Une comparaison à titre indicatif avec les critères du REIMR n'a démontré aucun dépassement en COV. Il n'y a pas de critères pour les phénols ni les hydrocarbures C_{10} - C_{50} .

RDS

Aucun dépassement des critères du RDS n'est observé pour les phénols. Mentionnons qu'il n'existe aucune norme pour les COV et les hydrocarbures C_{10} - C_{50} dans le RDS.

PPSRTC

Aucun dépassement des critères du PPSRTC en COV et en hydrocarbures C_{10} - C_{50} n'a été observé sur les échantillons d'eau souterraine qui ont fait l'objet d'analyses chimiques lors de cette campagne. Il n'y a pas de critères du PPSRTC pour les phénols.

4.1.3 Paramètres microbiologiques

Tous les résultats sur les coliformes ont été présentés avec une limite de détection supérieure à 10 UFC/100 ml. Cette valeur élevée de la limite de détection obtenue aurait été causée entre autres par la présence de nombreuses particules dans certains échantillons d'eau et par le recours à la dilution dans le cadre du processus d'analyse. Toutefois à l'exception du puits P-410 où une valeur de 200 UFC/100 ml et des puits P-407, P-409 et P-413 où des valeurs <100 UFC/100 ml sont rapportées, tous les autres résultats se situent sous le <10 UFC/100 ml.

Notons que la série de puits d'observation P-407 à P-413, situés près de la rivière sont peu profonds et majoritairement constitués de pointes filtrantes. De plus, ayant été construits pour intercepter la surface de la nappe, ils sont crépinés sur toute la longueur du tubage et interceptent même un horizon de sol organique en surface. Ces conditions pourraient y expliquer la présence de coliformes totaux. Les puits plus profonds en amont ne montrent pas de bactéries.

REIMR

Une comparaison à titre indicatif avec le critère du REIMR pour les coliformes fécaux a démontré un dépassement dans les puits d'observation P-51 et P-410.

RDS

Une comparaison à titre indicatif avec les critères du RDS indique l'atteinte de la norme pour les coliformes fécaux dans deux puits seulement (P-51 et P-410) et quelques dépassements dans les puits P-407, P-409 et P-410 pour les coliformes totaux.

PPSRTC

Il n'y a pas de critères du PPSRTC pour les coliformes totaux et fécaux.

4.2 Lixiviat

Les résultats des analyses chimiques d'un échantillon de lixiviat prélevé sous la cellule 3 sont également présentés au tableau 4.1. Tel qu'anticipé pour ce type de matrice, on constate des concentrations importantes en azote ammoniacal, en ions majeurs (Ca, Cl, Fe, Mg, Na, K, Mn,

SO₄, H₂S), en DCO et DBO₅, en quelques métaux seulement (Cr, Ni, Zn), en quelques composés phénoliques ainsi qu'en quelques COV, ce qui permet d'utiliser ces éléments comme traceurs. Ces paramètres s'inscrivent dans la liste d'éléments identifiés dans le lixiviat de la cellule 3, mais semblent se retrouver de façon générale en concentrations plus faibles dans l'échantillon prélevé lors de la présente campagne (communications, tableaux du MDDEP).

Il faut toutefois rappeler le caractère très variable de la composition d'un lixiviat. En effet, ce dernier varie non seulement en fonction du type de déchets enfouis, mais également selon l'âge du site (stade de décomposition des déchets) et la période d'échantillonnage.

4.3 Eau de surface

Les résultats des analyses chimiques sur les échantillons d'eau de surface provenant de la présente campagne d'échantillonnage sont présentés au tableau 4.2. Les résultats permettent d'obtenir un portrait de la qualité des eaux de la rivière St-Joseph en amont et en aval du site.

On observe une absence de variation spatiale significative dans la valeur des concentrations de certains paramètres mesurés dans les 4 échantillons, notamment les cyanures totaux, les sulfures, la DCO, la DBO₅, les huiles et graisses totales et les métaux (As, Cd, Cr, Cu, Hg, Pb, Zn). De plus, tous les échantillons ont présenté des concentrations en phénols sous le seuil de détection analytique.

On constate toutefois une variation spatiale significative des concentrations de certains autres paramètres d'amont vers l'aval sur la rivière St-Joseph. Il s'agit de l'azote ammoniacal, des nitrates et nitrites, des chlorures, des sulfates, du bore, du calcium, du fer et du nickel.

4.4 Eau des puits privés

La qualité de l'eau des puits de quelques résidences situées en périphérie de la propriété de DRN a été évaluée durant la présente campagne. Les paramètres d'analyse retenus font référence aux critères de qualité sur l'eau potable. Les résultats sont présentés au tableau 4.3.

On constate en regardant les résultats des analyses qu'il n'y a aucun dépassement des critères de potabilité, à l'exception des coliformes totaux dans 2 échantillons. Les résultats semblent également constants de part et d'autre du site pour la majorité des paramètres analysés, soit en amont et en aval hydraulique. Les exceptions ou valeurs les plus élevées semblent aléatoires et ne semblent pas démontrer de tendance significative.

Tableau 4.2: Résultats des analyses chimiques des échantillons d'eau de surface prélevés en août 2005

			S-1	S-		S-3	S-4
0	Dougue àtue	l laité a	2225 22 24	2225 22 24	Duplicata 2005-08-24		
Groupe		Unités	2005-08-24	2005-08-24		2005-08-24	2005-08-24
Inorg.	Azote ammoniacal en N	μg/L	100	110	120	750	740
	Cyanures totaux en CN	μg/L	< 20	< 20	< 20	< 20	< 20
	Nitrites & nitrates en N	μg/L	30	50	50	80	160
	Sulfures (en H2S)	μg/L	< 40	< 40	< 40	< 40	< 40
	Chlorures	μg/L	3100	30900	30000	80100	85200
	Sulfates en SO4	μg/L	1100	3600	3600	8800	10900
	DCO	μg/L	51000	54000	52000	70000	51000
	DBO5	μg/L	< 4000	< 4000	< 4000	< 4000	< 4000
	Huiles et graisses totales	μg/L	1800	3500	< 1300	< 1200	1900
Métaux	Arsenic	μg/L	< 1	< 1	< 1	< 1	< 1
	Bore	μg/L	< 20	20	< 20	40	50
	Cadmium	μg/L	< 1	< 1	< 1	< 1	< 1
	Calcium	μg/L	12100	37100	37300	65800	64900
	Chrome	μg/L	4	5	4	4	4
	Cuivre	μg/L	3	2	2	5	1
	Fer	μg/L	2150	3530	3540	4490	4040
	Mercure	μg/L	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
	Nickel	μg/L	< 1	2	1	3	3
	Plomb	μg/L	< 1	1	< 1	< 1	< 1
	Zinc	μg/L	10	10	< 10	10	< 10
Phénols	(2,5 + 2,6)-Dichlorophénol	μg/L	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
	2,3,4,5-Tétrachlorophénol	μg/L	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
	2,3,4,6-Tétrachlorophénol	μg/L	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
	2,3,4-Trichlorophénol	μg/L	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
	2,3,5,6-Tétrachlorophénol	μg/L	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
	2,3,5-Trichlorophénol	μg/L	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
	2,3,6-Trichlorophénol	μg/L	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
	2,3-Dichlorophénol	μg/L	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
	2,4,5-Trichlorophénol	μg/L	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
	2,4,6-trichlorophénol	μg/L	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
	2,4-Dichlorophénol	μg/L	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
	2,4-Diméthylphénol	μg/L	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
	2,4-Dinitrophénol	μg/L	< 10	< 10	< 10	< 10	< 10
	2-Chlorophénol	μg/L	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
	2-Méthyl-4,6-dinitrophénol	μg/L	< 10	< 10	< 10	< 10	< 10
	2-Nitrophénol	μg/L	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
	3,4,5-Trichlorophénol	μg/L	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
	3,4-Dichlorophénol	μg/L	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
	3,5-dichlorophénol	μg/L	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
	3-Chlorophénol	μg/L	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
	4-Chlorophénol	μg/L	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
	4-Nitrophénol	μg/L	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
	m-Crésol	μg/L	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
	o-Crésol	μg/L	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
	p-Crésol	μg/L μg/L	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
	Pentachlorophénol	μg/L μg/L	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
	Phénol	μg/L μg/L	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
	Sommation des phénols chlorés	μg/L μg/L	ND	ND	ND	ND	ND
	Sommation des phénols non-chlorés	μg/L μg/L	ND ND	ND ND	ND	ND	ND
	Coliformes fécaux	nbre/100mL	110	420	370	1000	1200
	Colliformes totaux	nbre/100mL	4000	4000	14000	4000	24000

Tableau 4.3: Résultats des analyses chimiques des échantillons d'eau provenant de puits privés

	Critères eau				Eau potable		
Paramètre	potable	140 Bard	ochette	2180 St-Albert	430 Rang St-Philomène	511 Rang St-Philomène	693 Rang des Cascades
	μg/L	2005-08-25	2005-08-25 Dup	2005-08-25	2005-08-25	2005-08-25	2005-08-25
Bromates	10	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Chloramines (en Cl2)	3000	-	-	-	-	-	-
Chlore libre (en Cl2)		<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Monochloramine (en eq. Cl2)		<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Dichloramine (en eq. Cl2)		<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Chlore total (libre et combiné) (en Cl2)		<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Cyanures totaux en CN	200	<20	<20	<20	<20	<20	<20
Nitrites & nitrates en N	10000	1800	1810	200	760	30	5010
Chlorures	-	3200	3200	2500	3000	1200	60900
Sulfates en SO4	_	23900	23600	12100	10500	8500	24900
Sulfures (en H2S)		<40	<40	<40	<40	40	<40
DCO	-	34000	27000	23000	9000	36000	29000
DBO ₅	_	<4000	<4000	<4000	<4000	<4000	<4000
Fluorures	1500	30	30	50	70	60	70
Antimoine	6	<1	<1	<1	<1	<1	<1
Arsenic	25	<1	<1	<1	<1	<1	<1
Baryum	1000	30	30	<10	20	20	30
Bore	5000	<20	<20	<20	<20	<20	<20
Cadmium	5	<1	<1	<1	<1	<1	<1
Chrome	50	1	1	1	1	1	1
Cuivre	1000	8	8	17	19	1	84
Fer	-	150	160	840	500	970	40
Mercure	1	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2
Nickel	¥	1	1	<1	<1	<1	<1
Plomb	10	<1	<1	<1	<1	<1	<1
Sélénium	10	<1	<1	<1	<1	<1	<1
Uranium	20	<5	<5	<5	<5	<5	<5
Zinc	5000	10	10	50	<10	20	20
Dénombrement total aérobie (nbre/mL)	500	100	64	6	<1	<1	260
Coliformes fécaux (nbre/100mL)		<1	<1	<1	<1	<1	<1
Coliphages mâle-spécifiques (100mL)		<absence></absence>	<absence></absence>	<absence></absence>	<absence></absence>	<absence></absence>	<absence></absence>
Coliformes totaux (nbre/100mL)	10	48	<1	<1	<1	<1	>80
Bactéries atypiques (nbre/100mL)	200	2	<1	<1	<1	<1	>200
Streptocoques fécaux (nbre/100mL)		<1	<1	<1	<1	<1	>24
Composés phénoliques	-	8	8	12	13	6	11
Huiles et graisses totales	-	<1200	<1200	<1200	<1300	<1300	<1200

4.5 Contrôle de la qualité

Un programme d'assurance et de contrôle de la qualité a été instauré pour les besoins de la présente campagne d'échantillonnage. Ce programme consistait, entre autre, à la prise d'échantillons en double et en triple, de blanc de terrain et de transport, sans compter le programme d'assurance qualité interne du laboratoire analytique. Des échantillons ont également été prélevés par le MDDEP durant la campagne, mais les résultats de ces analyses n'étaient pas disponibles pour commentaires à la remise de ce rapport.

Le tableau 4.4 montre les valeurs des paramètres physico-chimiques des échantillons originaux ainsi que leur duplicata échantillonnés le jour même et à la même heure, dans le cas des puits d'observation F-308A, P-33-C, P-407, P-411 et des blancs de terrain. Le puits P-411 fut aussi échantillonné le lendemain pour les COV afin d'évaluer l'effet de la durée entre la purge et l'échantillonnage, notamment pour la première journée de la campagne. Le puits P-33-C fut aussi échantillonné plus tard durant le même jour uniquement pour les COV.

Les résultats des analyses chimiques permettent de faire les constations suivantes :

- F-308A: Les concentrations mesurées dans l'eau souterraine des échantillons F-308A et du duplicata F-308A DUP ne montrent aucun changement significatif, à l'exception du bore.
- P-33C: Seuls les BTEX ont été analysés en commun dans les échantillons. Le duplicata ne montre aucun changement avec l'original P-33-C et une faible valeur de benzène est détectée dans les 2 échantillons.
- P-407: Les concentrations mesurées dans l'eau souterraine des échantillons P-407 et du duplicata P-407 DUP ne montrent aucun changement significatif. Les deux échantillons montrent des concentrations similaires et les mêmes dépassements au REIMR.
- P-411 : Les concentrations mesurées dans l'eau souterraine des échantillons F-411 et du duplicata P-411 DUP ne montrent aucun changement significatif, à l'exception de variations dans les concentrations de DCO, DBO₅ et des coliformes totaux. Après confirmation de ces résultats par quelques reprises de ces analyses, il semble que les variations des concentrations soient causées par le fait que les échantillons n'étaient pas homogènes. Les concentrations mesurées dans l'eau souterraine du P-411 échantillonné le lendemain ne montre aucun changement significatif des COV avec les concentrations de la veille, à l'exception d'une faible valeur détectée en bromochlorométhane.
- Blancs: Les blancs de terrain et de transport ne furent analysés que pour les BTEX. Ces échantillons ont été exposés à l'air à chaque site d'échantillonnage. Ces derniers ne montrent que de faibles concentrations en BTEX détectées.

Les résultats cités plus haut témoignent de la bonne représentativité des analyses chimiques. Malgré la présence de faibles concentrations de certains COV dans les blanc de terrain (ouverts à tous les sites d'échantillonnage), l'ensemble des autres résultats semble indiquer qu'il est peu probable qu'une contamination des échantillons se soit produite durant l'échantillonnage et le transport.

Pour compléter le programme d'assurance et de contrôle qualité, une rigoureuse chaîne de possession des échantillons a été établie. En effet, en plus de la présence continuelle lors de l'échantillonnage de représentants des différentes parties concernées par l'étude (MDDEP, DRN, municipalités), les échantillons ont été transmis au laboratoire d'analyse chimique le jour même afin d'éviter d'éventuelles interrogations sur leur sort et pour garantir leur intégrité. Les signatures du technicien de SLI et des représentants du laboratoire avec la date et l'heure de réception au laboratoire sont incluses sur les bordereaux de transmission d'échantillons joints à l'annexe 3.

	4.4: Résultats des contrôles analytic	1		F-	308A		P-33C	P-	407		P-411		BLANC DE	TERRAIN
		1	REIMR	-	Duplicata 2005-		(15h00) 2005-		Duplicata		Duplicata			
Groupe Inorg.	Paramètre Cyanures totaux en CN	Unités μg/L	200	2005-08-23 < 20	08-23 < 20	2005-08-16 < 20	08-17	2005-08-18 < 20	2005-08-18 < 20	2005-08-16 < 20	2005-08-16 < 20	2005-08-17	2005-08-18	2005-08-23
morg.	Nitrites & nitrates en N	μg/L	10000	< 20	20	690	-	20	30	< 20	30	-	-	-
	Chlorures Sulfates en SO4	μg/L μg/L	250000 500000	1100 12500	1100 12500	159000 82500	-	1200 1900	1200 1900	714000 < 300	752000 400	-	-	-
	Azote ammoniacal en N Carbonates en CaCO3	μg/L μg/L	1500	< 20 5000	< 20 5000	12200 < 3000	-	410 < 3000	400 < 3000	1000 < 3000	990 < 3000	-	-	-
	Conductivité Sulfures (en H2S)	μmhos/cm μg/L	50	150 < 40	117 < 40	752 < 40	-	176 < 40	168 < 40	945 < 40	833 < 40	-	-	-
	DCO DBO5	μg/L μg/L		< 5000 < 4000	< 5000 < 4000	109000	-	161000 7000	108000 4000	215000 10000	107000 5000	-	-	-
Métaux	Arsenic Soluble	μg/L		< 1	< 1	1	-	1	1	1	1	-	-	-
	Bore Soluble Cadmium Soluble	μg/L μg/L	5000 5	80 < 1	< 20 < 1	40 < 1	-	< 20 < 1	< 20 < 1	30 < 1	30 < 1	-	-	-
	Calcium Soluble Chrome Soluble	μg/L μg/L	50	17700 < 1	17100 < 1	169000 4	-	34700 1	34600 1	345000 12	336000 1	-	-	-
	Cuivre Soluble Fer Soluble	μg/L μg/L	300	1 10	1 < 10	1 13400	-	1 5310	1 5220	1 12400	1 12900	-	-	-
	Magnésium Soluble	μg/L		3750	3660	32400	-	6270	6180	62800	61300	-	-	-
	Manganèse Soluble Mercure Soluble	μg/L μg/L	50 1	< 5 < 0,2	< 5 < 0,2	4030 < 0,2	-	177 < 0,2	176 < 0,2	1600 0,2	1550 < 0,2	-	-	-
	Nickel Soluble Plomb Soluble	μg/L μg/L	20 10	< 1 1	8	3 < 1	-	1	1	5 < 1	4 < 1	-	-	-
	Potassium Soluble Sodium Soluble	μg/L μg/L	200000	800 2400	900 2300	11600 73700	-	< 500 3000	500 3800	3800 104000	3100 102000	-	-	-
Microb.	Zinc Soluble Coliformes fécaux ¹	μg/L Nbre/100ml	5000 0	< 10	20	< 10 < 10	-	140	90 < 100	< 10 < 10	40 < 10	-	-	-
	Coliformes totaux	Nbre/100ml		-	-	< 10	-	3200	2800	< 10	60	-	-	-
	Hydrocarbures pétroliers C10-C50 Naphtalène	μg/L μg/L		< 100	< 100	< 100	< 0,1	100	< 100	< 100 < 0,1	< 100 < 0,1	- < 0,1	-	-
	(2,5 + 2,6)-Dichlorophénol	μg/L		< 0,3	< 0,3	< 0,3	-	< 0,5	< 0,5	< 0,3	< 0,3	-	-	-
	2,3,4,5-Tétrachlorophénol	μg/L μg/L		< 0,3	< 0,3 < 0,3	< 0,3	-	< 0,5 < 0,5	< 0,5 < 0,5	< 0,3	< 0,3	-	-	-
	2,3,4-Trichlorophénol 2,3,5,6-Tétrachlorophénol	μg/L μg/L		< 0,3 < 0,3	< 0,3 < 0,3	< 0,3 < 0,3	-	< 0,5 < 0,5	< 0,5 < 0,5	< 0,3 < 0,3	< 0,3 < 0,3	-	-	-
	2,3,5-Trichlorophénol 2,3,6-Trichlorophénol	μg/L μg/L		< 0,3 < 0,3	< 0,3 < 0,3	< 0,3 < 0,3	-	< 0,5 < 0,5	< 0,5 < 0,5	< 0,3 < 0,3	< 0,3 < 0,3	-	-	-
	2,3-Dichlorophénol 2,4,5-Trichlorophénol	μg/L μg/L		< 0,3	< 0,3 < 0,3	< 0,3	-	< 0,5 < 0,5	< 0,5 < 0,5	< 0,3	< 0,3	-	-	-
	2,4,6-trichlorophénol	μg/L		< 0,3	< 0,3	< 0,3	-	< 0,5	< 0,5	< 0,3	< 0,3	-	-	-
	2,4-Dichlorophénol 2,4-Diméthylphénol	μg/L μg/L		< 0,3 < 0,3	< 0,3 < 0,3	< 0,3 < 0,3	-	< 0,5 < 0,5	< 0,5 < 0,5	< 0,3 < 0,3	< 0,3 < 0,3	-	-	-
	2,4-Dinitrophénol 2-Chlorophénol	μg/L μg/L		< 10 < 0,3	< 10 < 0,3	< 10 < 0,3	-	< 16 < 0,5	< 17 < 0,5	< 10 < 0,3	< 10 < 0,3	-	-	-
	2-Méthyl-4,6-dinitrophénol 2-Nitrophénol	μg/L μg/L		< 10 < 0,3	< 10 < 0,3	< 10 < 0,3	-	< 16 < 0,5	< 17 < 0,5	< 10 < 0,3	< 10 < 0,3	-	-	-
	3,4,5-Trichlorophénol 3,4-Dichlorophénol	μg/L		< 0,3	< 0,3	< 0,3	-	< 0,5 < 0,5	< 0,5 < 0,5	< 0,3	< 0,3 < 0,3	-	-	-
	3,5-dichlorophénol	μg/L μg/L		< 0,3	< 0,3	< 0,3	-	< 0,5	< 0,5	< 0,3	< 0,3	-	-	-
	3-Chlorophénol 4-Chlorophénol	μg/L μg/L		< 0,3 < 0,3	< 0,3 < 0,3	< 0,3 < 0,3	-	< 0,5 < 0,5	< 0,5 < 0,5	< 0,3 < 0,3	< 0,3 < 0,3	-	-	-
	4-Nitrophénol m-Crésol	μg/L μg/L		< 0,3 < 0,3	< 0,3 < 0,3	< 0,3 < 0,3	-	< 0,5 < 0,5	< 0,5 < 0,5	< 0,3 < 0,3	< 0,3 < 0,3	-	-	-
	o-Crésol p-Crésol	μg/L μg/L		< 0,3	< 0,3 < 0,3	< 0,3 < 0,3	-	< 0,5 < 0,5	< 0,5 < 0,5	< 0,3 < 0,3	< 0,3 < 0,3	-	-	-
	Pentachlorophénol Phénol	μg/L		< 0,3	< 0,3	5,1	-	< 0,5	< 0,5	< 0,3	< 0,3	-	-	-
	Sommation des phénols chlorés	μg/L μg/L		< 0,3	< 0,3	< 0,3 5,1	-	< 0,5	< 0,5	< 0,3	< 0,3	-	-	-
COV	Sommation des phénols non-chlorés 1,1,1,2-tétrachloroéthane	μg/L μg/L	-	-	-	-	-	-	-	-	-	-	-	-
		μg/ L		-	-	-	< 0,1	-	-	< 0,1	< 0,1	< 0,1	-	-
	1,1,1-trichloroéthane 1,1,2,2-tétrachloroéthane	μg/L		-		-	< 0,1 < 0,1 < 0,1	-	-	< 0,1 < 0,1 < 0,1	< 0,1 < 0,1 < 0,1	< 0,1 < 0,1 < 0,1	- - -	
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane	μg/L μg/L μg/L		- - -	- - -	-	< 0,1 < 0,1 < 0,1	- - -	- - -	< 0,1 < 0,1 < 0,1	< 0,1 < 0,1 < 0,1	< 0,1 < 0,1 < 0,1	- - -	
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1-dichloroéthane 1,1-dichloroéthène	μg/L μg/L μg/L μg/L μg/L		- - - -	-	- - -	< 0,1 < 0,1 < 0,1 0,1 < 0,1	-	- - - -	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1	- - - -	-
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1-dichloroéthane 1,1-dichloroéthène 1,2,4-Triméthylbenzène 1,2-dibromoéthane	µg/L µg/L µg/L µg/L µg/L µg/L µg/L			-		< 0,1 < 0,1 < 0,1 0,1 < 0,1 < 0,1 < 0,1 < 0,5	- - - - -	- - - - -	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5	- - - - -	-
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1-dichloroéthane 1,1-dichloroéthène 1,2,4-Triméthylbenzène 1,2-dibromoéthane 1,2-dichloroéthane 1,2-Dichloroéthène (cis)	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L		- - - -	- - - -	- - - -	< 0,1 < 0,1 < 0,1 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1	- - - -	- - - - -	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,5	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,5	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1	- - - -	- - - -
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1-dichloroéthane 1,1-dichloroéthène 1,2,4-Triméthylbenzène 1,2-dibromoéthane 1,2-dichloroéthane	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L			-	- - - -	< 0,1 < 0,1 < 0,1 0,1 < 0,1 < 0,1 < 0,5 < 0,1	- - - - -		< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1	- - - - - -	
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1-dichloroéthane 1,1-dichloroéthène 1,2-d-Triméthylbenzène 1,2-dibromoéthane 1,2-dichloroéthène 1,2-Dichloroéthène (cis) 1,2-dichloropropane 1,3,5-Triméthylbenzène 1,3-dichloropropane	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L					< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1		- - - - - - - -	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1	- - - - - - - -	
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1-dichloroéthane 1,1-dichloroéthane 1,1-dichloroéthène 1,2,4-Triméthylbenzène 1,2-dibromoéthane 1,2-dichloroéthane 1,2-dichloroéthène (cis) 1,2-dichloropropane 1,3,5-Triméthylbenzène 1,3-dichloropropane 1,3-dichloropropàne (cis) Benzène	µg/L µg/L	5	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	< 0,1 < 0,1 < 0,1 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,0,1	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 <	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 <	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 <	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1-dichloroéthane 1,1-dichloroéthane 1,2-dirichloroéthène 1,2,4-Triméthylbenzène 1,2-dichloroéthane 1,2-dichloroéthane 1,2-Dichloroéthène (cis) 1,2-dichloropropane 1,3-5-Triméthylbenzène 1,3-dichloropropane	µg/L µg/L	5	- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -	< 0,1 < 0,1 < 0,1 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 <	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 <	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 <	- - - - - - - - - - - - - - - - - - -	
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1-dichloroéthane 1,1-dichloroéthane 1,2-diromoéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dichloroéthane 1,2-dichloroéthène (cis) 1,2-dichlorofthène (cis) 1,2-dichloropropane 1,3,5-Triméthylbenzène 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropàne (cis) Benzène Bromochlorométhane Bromodichlorométhane Bromodichlorométhane Bromométhane	µg/L µg/L	5	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 <	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 <	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 <	<pre>< 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5</pre>	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1-dichloroéthane 1,1-dichloroéthane 1,2-dirhoroéthène 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dichloroéthène (cis) 1,2-dichloroéthène (cis) 1,2-dichloropropane 1,3-5-Triméthylbenzène 1,3-dichloropropane	µg/L µg/L	5			- - - - - - - - - - - - - - - - - - -	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 <			< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 <	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 <	<pre>< 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 <</pre>	- - - - - - - - - - - - - - - - - - -	
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1-dichloroéthane 1,1-dichloroéthane 1,1-dichloroéthène 1,2,4-Triméthylbenzène 1,2-dibromoéthane 1,2-dichloroéthène (cis) 1,2-dichloropropane 1,3-5-Triméthylbenzène 1,3-Gichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-moethorométhane Bromochlorométhane Bromodichlorométhane Bromoforme Bromoforme Bromométhane Chloroéthane	µg/L µg/L	5				< 0,1 < 0,1 < 0,1 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,			< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 <	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 <	<pre>< 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 <</pre>	- - - - - - - - - - - - - - - - - - -	
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1-dichloroéthane 1,1-dichloroéthane 1,2-dibloroéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dichloroéthène 1,2-dichloroéthène (cis) 1,2-dichlorofthène (cis) 1,2-dichloropropane 1,3-5-Triméthylbenzène 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropène (cis) Benzène Bromochlorométhane Bromodichlorométhane Bromodichlorométhane Chloroforme Chloroforme Chloroforme Chlorométhane Chlorométhane Chlorométhane Chlorométhane Chlorométhane	µg/L µg/L	5				< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,0 < 0,1 < 0,0 <			< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 <	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,0 <	<pre>< 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,5 < 0,5 < 0,1</pre>	- - - - - - - - - - - 0,1	
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1-dichloroéthane 1,1-dichloroéthane 1,1-dichloroéthène 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dichloroéthène (cis) 1,2-dichloropropane 1,3-5-Triméthylbenzène 1,3-5-Triméthylbenzène 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropène (cis) Benzène Bromochlorométhane Bromodichlorométhane Bromoforme Chloroforme Chloroforme Chlorométhane Chlorométhane Chlorométhane Dichlorométhane Dichlorométhane	#g/L #g/L					< 0,1 < 0,1 < 0,1 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,			< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 <	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 <	<pre>< 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,5 < 0,5 < 0,5 < 0,1 < 1,5 < 0,1</pre>		
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1-dichloroéthane 1,1-dichloroéthane 1,2-dichloroéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dichloroéthane 1,2-Dichloroéthène (cis) 1,2-dichloropropane 1,3-5-Triméthylbenzène 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichlorométhane Bromochlorométhane Bromochlorométhane Bromochlorométhane Chloroéthane Chloroforme Chloroforme Chloroforme Chloroforme Chloroforme Chlorodifluorométhane Dichlorodifluorométhane Dichlorodifluorométhane Dichlorodifluorométhane Dichlorométhane Ethylbenzène Isopropyl benzène	#9/L #9/L	2,4				< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1			< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 <	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 <	<pre>< 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 <</pre>		
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1-dichloroéthane 1,1-dichloroéthane 1,1-dichloroéthène 1,2,4-Triméthylbenzène 1,2-dibromoéthane 1,2-dichloroéthène (cis) 1,2-dichloroéthène (cis) 1,2-dichloropropane 1,3,5-Triméthylbenzène 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropène (cis) Benzène Bromochlorométhane Bromodichlorométhane Bromoforme Bromométhane Chloroforme Chloroforme Chlorométhane Chlorométhane Chlorométhane Dichlorométhane Dichlorodifluorométhane	#9/L #9/L					< 0,1 < 0,1 < 0,1 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,			< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 <	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,6 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,0 < 0,1 < 0,0 < 0,1 < 0,0 < 0,1 < 0,0 <	<pre>< 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 <</pre>		
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1,1-dichloroéthane 1,1-dichloroéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dichloroéthane 1,2-dichloroéthène (cis) 1,2-dichloroéthène (cis) 1,2-dichloropropane 1,3-5-Triméthylbenzène 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropène (cis) Benzène Bromochlorométhane Bromodichlorométhane Bromodichlorométhane Chloroforme Chloroforme Chloroforme Chlorométhane Chlorométhane Dichlorométhane	Hall	2,4				< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,5 < 0,5 < 0,1 < 1,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,5 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1			< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1	<pre>< 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,5 < 0,1 < 1,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 <</pre>		
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1,1-dichloroéthane 1,1-dichloroéthane 1,2-dichloroéthène 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dichloroéthène (cis) 1,2-dichloroéthène (cis) 1,2-dichlorofothène (cis) 1,3-5-Triméthylbenzène 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichlorométhane Bromochlorométhane Bromochlorométhane Bromochlorométhane Chloroforme Chloroforme Chloroforme Chloroforme Chloroforme Chlorométhane Dichlorodifluorométhane Dichlorodifluorométhane Dichlorodifluorométhane Dichlorodifluorométhane Ethylbenzène Isopropyl benzène m+p-Xylène n-butylbenzène n-Propyl benzène O-Xylène Styrène	Halp Halp	2,4				< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1			< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1	<pre>< 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 <</pre>		
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1,1-dichloroéthane 1,1-dichloroéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dichloroéthène (cis) 1,2-dichloroéthène (cis) 1,2-dichloropropane 1,3,5-Triméthylbenzène 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropène (cis) Benzène Bromochlorométhane Bromodichlorométhane Bromodichlorométhane Chloroforme Chloroforme Chloroforme Chlorométhane Chlorométhane Dichlorométhane Dichlorométhane Dichlorométhane Dichlorométhane Dichlorométhane Etnylbenzène Isopropyl benzène m-p-Xylène n-butylbenzène n-Propyl benzène o-Xylène Styrène Tétrachloroéthène Tétrachloroéthène Tétrachlorure de carbone	#9/L #9/L	2,4				< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,5 < 0,5 < 0,1 < 1,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1			< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1	<pre>< 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 <</pre>		
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1,1-dichloroéthane 1,1-dichloroéthane 1,1-dichloroéthène 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dichloroéthène (cis) 1,2-dichloropropane 1,3-5-Triméthylbenzène 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropène (cis) Benzène Bromochlorométhane Bromodichlorométhane Bromoforme Chloroéthane Chloroforme Chlorométhane Chlorométhane Chlorométhane Dichlorométhane Dichlorométhane Dichlorométhane Dichlorométhane Dichlorométhane Dichlorodifluorométhane Dichlorodifluorométhane Dichlorodifluorométhane Dichlorodifluorométhane Dichlorodifluorométhane Dichlorodifluorométhane Dichlorométhane Ethylbenzène n-putylbenzène n-butylbenzène n-Propyl benzène n-Propyl benzène Tétrachloroéthène Tétrachloroéthène Trichloroéthène	Halp Halp	2,4				< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,5 < 0,5 < 0,1 < 0,5 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1			< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1	<pre>< 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,5 < 0,1 < 1,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 <</pre>		
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1,1-dichloroéthane 1,1-dichloroéthane 1,2-dichloroéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dichloroéthène 1,2-dichloroéthène (cis) 1,2-dichlorofthène (cis) 1,2-dichloropropane 1,3-5-Triméthylbenzène 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropène (cis) Benzène Bromochlorométhane Bromodichlorométhane Bromodichlorométhane Chloroforme Chloroforme Chloroforme Chlorométhane Chlorométhane Dichlorodifluorométhane Dichlorodifluorométhane Dichlorodifluorométhane Ethylbenzène Isopropyl benzène m+p-Xylène n-butylbenzène n-Propyl benzène o-Xylène Styrène Tétrachloroéthène Tétrachlorure de carbone Trichloroéthène Trichloroéthène Trichloroéthène Trichlorofluorométhane Trichlorofluorométhane Trichlorofluorométhane	#9/L #9/L	2,4				< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1			< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 <	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 <	<pre>< 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 <</pre>		
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1-dichloroéthane 1,1-dichloroéthane 1,1-dichloroéthène 1,2-dichloroéthène 1,2-dibromoéthane 1,2-dichloroéthène 1,2-dichloroéthène (cis) 1,2-dichloroéthène (cis) 1,2-dichloropropane 1,3-5-Triméthylbenzène 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropène (cis) Benzène Bromochlorométhane Bromochlorométhane Bromodichlorométhane Chloroéthane Chloroforme Chloroforme Chloroforme Chloroforme Chlorodifluorométhane Dichlorodifluorométhane Dichlorodifluorométhane Dichlorodifluorométhane Ethylbenzène Isopropyl benzène m+p-Xylène n-butylbenzène n-Propyl benzène o-Xylène Styrène Tétrachloroéthène Trichloroéthène Trichloroffluorométhane Trichlorofthuorométhane	#9/L #9/L	2,4				< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 1,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,5 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,5 < 0,5 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,5 < 0,5 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,6 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7 < 0,7			< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,0 	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1	<pre>< 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 </pre>		
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1,1-dichloroéthane 1,1-dichloroéthane 1,2-dichloroéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dichloroéthène (cis) 1,2-dichloropropane 1,3-5-Triméthylbenzène 1,3-5-Triméthylbenzène 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropène (cis) Benzène Bromochlorométhane Bromodichlorométhane Bromodichlorométhane Chloroforme Chloroforme Chloroforme Chlorométhane Dichlorodifluorométhane Tichlorofuore de carbone Toluène Trichloroéthène Trichlorofluorométhane Trichlorofluorométhane Xylènes 1,1-dichloropropène 1,2,3-trichloropropane	Halp Halp	2,4				< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,5 < 0,5 < 0,1 < 1,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,5 < 0,1 < 1,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1			< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 <	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 0,1 < 0,0 0,1 < 0,0 0,1 < 0,5 0,1 < 0,5 0,1 0,5 0,1 0,5 0,5 0,1 0,5 0,5 0,1 0,5 0,5 0,1 0,5 0,5 0,5 0,1 0,5 0,5 0,1 0,5 0,5 0,1 0,5 0,5 0,1 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 </td <td><pre>< 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 1,5 < 1,5 </pre></td> <td></td> <td></td>	<pre>< 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 1,5 < 1,5 </pre>		
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1,1-dichloroéthane 1,1-dichloroéthane 1,2-dichloroéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dichloroéthène (cis) 1,2-dichloroéthène (cis) 1,2-dichloropropane 1,3-5-Triméthylbenzène 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropène (cis) Benzène Bromochlorométhane Bromodichlorométhane Bromodichlorométhane Chloroforme Chloroforme Chloroforme Chlorométhane Chlorodifluorométhane Dichlorodifluorométhane Dichlorodifluorométhane Dichlorodifluorométhane Dichlorodifluorométhane Etnylbenzène Isopropyl benzène m-p-Xylène n-Proyl benzène n-Proyl benzène Tétrachlorure de carbone Tóluène Tétrachlorure de carbone Toluène Trichloroftuorométhane Xylènes 1,1-dichloropropène 1,2-dichloropropane 1,2-dichloropropène (trans) 1,3-dichloropropène (trans)	Halp Halp	2,4				< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1			< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 <	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 <	<pre>< 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 <</pre>		
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1,1-dichloroéthane 1,1-dichloroéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dichloroéthène (cis) 1,2-dichloropropane 1,3-5-Triméthylbenzène 1,3-5-Triméthylbenzène 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropène (cis) Benzène Bromochlorométhane Bromodichlorométhane Bromodichlorométhane Chloroforme Chloroforme Chloroforme Chlorométhane Chlorométhane Dichlorométhane Dichlorométhane Dichlorométhane Dichlorométhane Etnylbenzène Isopropyl benzène m-p-Xylène n-butylbenzène n-Propyl benzène o-Xylène Styrène Tétrachloroéthène Trichloroéthène Trichloroéthène Trichloroéthène Trichloroéthène Trichlorofuromethane Xylènes 1,1-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 2-chloroéthyl vinyl éther	Hay/L	2,4				< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,5 < 0,5 < 0,1 < 1,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5			< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 <	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,5 < 0,5 < 0,1 <	<pre>< 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 <</pre>		
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1,1-dichloroéthane 1,1-dichloroéthane 1,2-dichloroéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dichloroéthène 1,2-dichloroéthène (cis) 1,2-dichloropropane 1,3-5-Triméthylbenzène 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropène (cis) Benzène Bromochlorométhane Bromodichlorométhane Bromodichlorométhane Chloroforme Chloroforme Chloroforme Chlorofidluorométhane Dichlorodifluorométhane Dichlorodifluorométhane Dichlorodifluorométhane Dichlorométhane Ethylbenzène Isopropyl benzène m-p-Xylène n-butylbenzène n-Propyl benzène o-Xylène Styrène Tétrachloroéthène Tétrachlorofethène Trichlorofluorométhane Xylènes 1,1-dichloropropène 1,2,3-trichloropropane 1,2-dichlorofènène (trans) 1,3-dichloropropène (trans) 1,3-dichloropropène 1,2-dichloropropène (trans)	Halp Halp	2,4				< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1			< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,5 < 0,1 < 0,1	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1	<pre>< 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 <</pre>		
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1,1-dichloroéthane 1,1-dichloroéthane 1,2-dichloroéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dichloroéthène (cis) 1,2-dichlorofthène (cis) 1,2-dichloropropane 1,3-5-Triméthylbenzène 1,3-dichloropropane 1,3-dichloropropane 1,3-dichlorométhane Bromochlorométhane Bromochlorométhane Bromodichlorométhane Bromoforme Chloroforme Chloroforme Chloroforme Chlorofithane Chlorodifluorométhane Dichlorodifluorométhane Dichlorodifluorométhane Dichlorodifluorométhane Etnylbenzène Isopropyl benzène m-p-Xylène n-Propyl benzène n-Propyl benzène Tétrachlorure de carbone Tóluène Tétrachlorure de carbone Toluène Trichlorofthorométhane Etyrène Tétrachlorofthorométhane Xylène 1,2-dichloropropène 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 2-chloroéthyl vinyl éther 2-chlorotoluène Bromobenzène	Hall Hall	2,4				< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1			< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1	<pre>< 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 <</pre>		
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1,1-dichloroéthane 1,1-dichloroéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dichloroéthène (cis) 1,2-dichloropropane 1,3-5-Triméthylbenzène 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropène (cis) Benzène Bromochlorométhane Bromodichlorométhane Bromodichlorométhane Bromodichlorométhane Chloroforme Chloroforme Chloroforme Chlorométhane Dichlorodifluorométhane Dichlorodifluorométhane Dichlorodifluorométhane Dichlorométhane Etnylbenzène n-propyl benzène n-Propyl benzène n-Propyl benzène Tétrachloroéthène Tétrachloroéthène Trichloroéthène Trichloroéthène Trichlorofthoromethane Xylènes 1,1-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 2-chlorotoluène Bromobenzène Dibromométhane Dichloroftène Bromobenzène Dibromométhane	Hay/L Hay/	2,4				< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,5 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1			< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1	<pre>< 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 <</pre>		
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1,1-dichloroéthane 1,1-dichloroéthane 1,2-dichloroéthène 1,2-dichloroéthène 1,2-dichloroéthène 1,2-dichloroéthène 1,2-dichloroéthène (cis) 1,2-dichloropropane 1,3-5-Triméthylbenzène 1,3-dichloropropane 1,3-dichloropropène (cis) Benzène Bromochlorométhane Bromochlorométhane Bromodichlorométhane Bromodichlorométhane Chloroéthane Chloroforme Chloroforme Chloroforme Chloroforme Chlorodifluorométhane Dichlorodifluorométhane Dichlorodifluorométhane Ethylbenzène Isopropyl benzène m+p-Xylène n-butylbenzène N-Propyl benzène Tétrachloroéthène Tétrachloroéthène Tétrachloroéthène Trichloroftluorométhane Xylènes 1,1-dichloropropène 1,2,3-trichloropropane 1,2-dichloropropène	Hay/L Hay/	2,4				< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1			< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1	<pre>< 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 <</pre>		
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1,1-dichloroéthane 1,1-dichloroéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dichloroéthène 1,2-dichloroéthène (cis) 1,2-dichloropropane 1,3-5-Triméthylbenzène 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropène (cis) Benzène Bromochlorométhane Bromodichlorométhane Bromodichlorométhane Bromodichlorométhane Chloroforme Chloroforme Chloroforme Chlorométhane Dichlorométhane Dichlorométhane Ethylbenzène Isopropyl benzène m-p-Xylène n-butylbenzène n-butylbenzène Tétrachloroéthène Tétrachloroéthène Tétrachloroéthène Trichloroéthène Trichloroéthène Trichloroftluorométhane Xylènes 1,2-dichloropropène 1,2,3-trichloropropane 1,2-dichloropropène 1,2-dichloropropène 1,2-dichloropropène 2-chloroéthène Bromobenzène Dibromométhane Bromobenzène Dibromométhane Dichlorofethène Bromobenzène Dibromométhane	Halp Halp	2,4				< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1			< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1	<pre>< 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 <</pre>		
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1,1-dichloroéthane 1,1-dichloroéthane 1,2-dichloroéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dichloroéthène (cis) 1,2-dichlorofthène (cis) 1,2-dichloropropane 1,3-5-Triméthylbenzène 1,3-dichloropropane 1,3-dichloropropène (cis) Benzène Bromochlorométhane Bromochlorométhane Bromodichlorométhane Bromodichlorométhane Chloroforme Chloroforme Chloroforme Chlorofothane Chlorodifluorométhane Dichlorodifluorométhane Dichlorodifluorométhane Dichlorodifluorométhane Dichlorodifluorométhane Etnylbenzène Isopropyl benzène m-Proyl benzène n-Proyl benzène 7-tirachlorofthene Tétrachlorure de carbone Toluène Trichlorofthorométhane Xylène Styrène Tétrachlorure de carbone Toluène Trichloroftuorométhane Xylènes 1,1-dichloropropène 1,2,3-trichloropropane 1,2-dichloropropène (trans) 1,3-dichloropropène (trans) 2,2-dichlorofthène Bromobenzène Dibromométhane Bromobenzène Dibromométhane Bromobenzène 1,2,3-trichlorobenzène	#9/L #9/L	2,4				< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1			< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1	<pre>< 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 <</pre>		
	1,1,2,2-tétrachloroéthane 1,1,2-trichloroéthane 1,1,1-dichloroéthane 1,1-dichloroéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dibromoéthane 1,2-dichloroéthène (cis) 1,2-dichloropropane 1,3-5-Triméthylbenzène 1,3-dichloropropane 1,3-dichloropropène (cis) Benzène Bromochlorométhane Bromodichlorométhane Bromodichlorométhane Bromodichlorométhane Chloroforme Chloroforme Chloroforme Chlorométhane Chlorodifluorométhane Dichlorodifluorométhane Dichlorodifluorométhane Dichlorométhane Etnylbenzène n-propyl benzène n-Propyl benzène n-Propyl benzène Tétrachloroéthène Trichloroéthène Trichloroéthène Trichloroéthène Trichlorofthene Trichlorofthorométhane Xylènes 1,1-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 2-chlorotoluène Bromobenzène Dibromométhane Dibromométhane Di-lopropopane 1,2-dichloropropane 1,2-dichloropropane 2-chlorotoluène Bromobenzène Dibromométhane Dibromométhane Dibromométhane Dichloropropane 1,2-dichlorobenzène Dibromométhane Dibromométhane Di-lopropopane	Hay/L	2,4				< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,5 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1			< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1	< 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1	<pre></pre>		

Note 1: La limite de détection pour les coliformes fécaux a été mise à < 10 /100 ml bien que le critère soit de 0 /100 ml.

5. <u>ASPECTS HYDROGÉOCHIMIQUES</u>

5.1 <u>Sélection des paramètres indicateurs</u>

Les résultats obtenus lors de la présente campagne ont été comparés aux données disponibles des campagnes de 1982 à 2005 pour les puits d'observation ayant déjà fait l'objet d'un suivi environnemental, ainsi que les sites de prélèvements le long de la rivière St-Joseph. Parmi tous les paramètres analysés, les chlorures, la DCO, l'azote ammoniacal, les nitrates et nitrites, les sulfates, les sulfures, le fer, le manganèse et quelques métaux (B, Cr, Cu, Ni, Zn) ont été examinés de façon plus détaillée. Ces paramètres ont été jugés comme représentant un intérêt, compte tenu de leurs concentrations déjà observées dans l'eau souterraine sur le site, du fait qu'ils ont des critères à respecter, notamment dans le RDS au point de résurgence, et du fait qu'ils aient été fréquemment analysés. De plus, ils reflètent en partie les éléments détectés en plus forte concentration dans l'échantillon de lixiviat.

Ces éléments sont fréquemment identifiés dans les eaux de lixiviation pour les raisons suivantes qui en font de bon traceurs des panaches de contamination des lieux d'enfouissement sanitaire :

<u>Chlorures</u> : Il s'agit d'un élément très soluble qui est présent en quantité importante dans les déchets et les eaux de lixiviation. Sa grande mobilité en fait un excellent traceur du front de contamination.

<u>DCO</u>: Ce paramètre reflète le résultat de la dégradation et de la lixiviation de la matière organique.

<u>Azote ammoniacal</u>: État des composés azotés dans un milieu anaérobique comme un panache de contamination organique.

<u>Nitrates et nitrites</u>: Ces composés sont souvent associés aux zones agricoles suite à l'épandage de fertilisants. Ces composés se forment en milieu oxygéné et peuvent s'observer à la frange d'un panache de contamination contenant des composés azotés.

<u>Sulfates</u> : Ce composés est un constituant naturel important des eaux souterraines

<u>Sulfures</u>: État des composés soufrés dans un milieu anaérobique comme le panache de contamination organique.

<u>Fer et manganèse</u>: Bien que le fer et le manganèse soient présents dans les déchets et dans le lixiviat, ils se retrouvent également en grande quantité dans les sols et les sédiments sous forme d'hydroxydes. Les conditions réductrices au centre d'un panache de contamination organique provoquent la réduction de ces hydroxydes et la solubilisation de ces métaux qui peuvent alors atteindre de fortes concentrations.

<u>Métaux</u> (Br, Cr, Cu, Ni, Zn): On retrouve ces éléments dans les lixiviats de par la présence entre autres matériaux de contenants et de matières métalliques dans les déchets. Ces métaux sont relativement mobiles en conditions anaérobiques et acides d'un lixiviat en tête d'un panache de contamination de LES.

Les autres paramètres analysés (As, Cd, Ca, Cr, Hg, Pb, cyanures totaux, phénols, DBO₅, les coliformes fécaux et totaux) ont été regardés sommairement parce qu'il y avait un nombre insuffisant de données temporelles de disponible et/ou parce les concentrations se situaient le plus souvent sous la limite de détection ou légèrement au-dessus. Les données des

campagnes antérieures et celles du présent échantillonnage sont présentées dans le tableau de l'annexe 4.

5.2 Bruit de fond de la qualité des eaux souterraines

Dans un objectif d'identification des teneurs naturelles des principaux paramètres physicochimiques présents dans l'eau souterraine, deux puits d'observation situés en amont hydraulique des cellules ont été retenus pour représenter les valeurs du bruit de fond. Il s'agit des puits F-308-A et F-311-A qui sont localisés dans des secteurs ne présentant pas de risque de contamination. De plus, afin d'agir comme puits témoins le plus en amont sur la rivière St-Joseph, l'aménagement du puits d'observation P-407 visait à obtenir des valeurs de bruit de fond pour les eaux souterraines de la partie supérieure de l'aquifère située le plus près possible de la rivière. Les résultats ont été présentés précédemment au tableau 4-1

L'analyse des résultats des puits F-308-A et F-311-A nous montre que l'eau souterraine de la région est faiblement minéralisée avec une conductivité électrique de l'ordre de 133 à 150 μ mhos/cm. On remarque de très faibles concentrations pour les éléments traceurs de contamination, soit : les chlorures (900 - 1 100 μ g/l) la DCO (< 5 000 μ g/l), l'azote ammoniacal (20 - 50 μ g/l), les nitrates et nitrites (20-30 μ g/l), les sulfates (12 000 μ g/l), les sulfures (< 40 μ g/l), le fer (10 – 560 μ g/l), le manganèse (< 34 μ g/l) et quelques métaux dont le cuivre (1 μ g/l) et le zinc (10 μ g/l). Ainsi, toutes concentrations observées de l'ordre de ces valeurs seront considérées comme partie du bruit de fond, donc n'ayant pas été influencées par une contamination du lieu d'enfouissement.

Les résultats d'analyse chimiques de l'eau souterraine prélevée au puits témoin P-407 sont semblables à ceux des puits F-308-A et F-311-A pour la grande majorité des paramètres analysés. Toutefois, on note de plus fortes concentrations pour certains paramètres, notamment le fer, le manganèse, le zinc, l'azote ammoniacal, les coliformes totaux, la DCO et la DBO₅. En plus du fait que les caractéristiques géochimiques soient liées au type de terrain à l'intérieur duquel circulent les eaux souterraines, l'aménagement du puits P-407 à faible profondeur et crépiné sur sa pleine longueur, avec également peu de protection contre les infiltrations potentielles de la surface, et implanté dans un sol riche en matières organiques, peuvent expliquer la différence dans les valeurs du bruit de fond. Les résultats d'analyse chimiques pour P-407 seraient donc représentatifs des caractéristiques physico-chimiques de l'eau souterraine à proximité de la rivière, mais sont aussi affectés par les infiltrations des eaux de ruissellement.

En comparant les résultats des analyses chimiques de l'eau prélevée dans tous les puits d'observation avec ceux des puits F-308-A, F-311-A et P-407, on constate clairement que la qualité des eaux souterraines de la majorité des puits en aval du site et près de la rivière St-Joseph a été affectée par le lixiviat qui migre des anciennes cellules. Ceci est normal compte tenu de la nature du site, c'est-à-dire, un lieu d'enfouissement de matières résiduelles opérant par atténuation naturelle. Quelques puits semblent néanmoins être moins affectés : P-24, P-30, P-32, P-35-A et P-66 qui sont situés plus en amont des cellules ou en périphérie aval. Tel que prévu dans le cadre du présent mandat, les caractéristiques spatiales et temporelles du panache de migration seront évaluées et ces aspects sont discutés dans les sections qui suivent.

5.3 <u>Distribution spatiale de la contamination</u>

Les résultats d'analyse chimique pour la campagne de 2005 ont permis d'établir la position des panaches de migration en aval des cellules pour différents éléments traceurs. Cette zone correspond à l'aire problématique du site puisqu'elle concerne le secteur de résurgence potentielle de contaminants vers la rivière St-Joseph, c'est-à-dire, la zone entre les cellules et la rivière. Les concentrations mesurées dans ce secteur sont présentées sous la forme de carte d'iso-valeurs aux figures 5.1 et 5.2 pour les chlorures, la DCO, le fer, le manganèse, l'azote ammoniacal, les nitrates et nitrites, les sulfates et les sulfures. Les autres éléments n'ont pas été représentés car ils ne présentaient que quelques concentrations plus élevées retrouvées dans des secteurs spécifiques. Bien qu'elles ne représentent pas de façon précise la forme des panaches de migration des éléments chimiques concernés (limité par le nombre et la distribution spatiale des puits), ces cartes présentent une information utile sur la localisation des aires les plus contaminées.

On constate que pour quelques uns de ces paramètres, les valeurs les plus élevées pour la campagne de 2005 se retrouvent dans les puits d'observation situés à proximité de la rivière St-Joseph par rapport à leurs puits situés en amont. C'est le cas notamment pour les chlorures, la DCO et le fer dans le secteur *sud-est* de la cellule 1 (P-14, P-15, P-412), ainsi que pour les chlorures et la DCO seulement dans le secteur *sud-est* de la cellule 2A (P-411). Pour le manganèse, l'azote ammoniacal, les nitrates et nitrites, les sulfates et les sulfures, on observe les concentrations plus élevées plus en amont dans la zone de la cellule 1 (P-9), ainsi que pour le manganèse et les sulfures dans le secteur de la cellule 2A (P-50-R et P-51). La distribution spatiale des concentrations les plus élevées des autres éléments, notamment les métaux, est restreinte à des secteurs spécifiques, soit le *sud-est* de la cellule 1 (B, Cr et Ni) et le *sud-est* de la cellule 2C (Cu et Zn). De plus, notons généralement une tendance à la diminution des concentrations avec la profondeur dans les puits d'observation à niveaux multiples (séries A, B, C).

Le fait que les concentrations de certains éléments, en particulier les chlorures, diminuent en amont des puits où les valeurs élevées sont observées suggère que la progression du front de contamination s'est déplacée et a atteint la rivière St-Joseph. Les concentrations observées dans les puits près de la rivière constitueraient donc les valeurs probables des concentrations en ces éléments qui pourraient faire résurgence dans le lit de la rivière. De plus, les valeurs de ces éléments étant plus faibles à proximité des sources (cellules), cela indiquerait potentiellement une stabilisation de la source et une baisse de la concentration de ces éléments dans l'eau souterraine, ce qui serait normal depuis la fermeture des cellules.

Par contre, le panache de contamination pour d'autres éléments continue sa progression vers la rivière. Ce serait le cas au *sud* de la cellule 1 pour les couples azote ammoniacal/ nitrates et nitrites, et sulfates/sulfures qui témoignent de la progression d'un environnement réducteur marqué par une forte concentration en matière organique. De plus, les concentrations plus élevées en DCO, sulfates et sulfures au *sud* des cellules 2A et 2C reflètent la présence des lagunes de traitement de boues de fosses septiques.

Mentionnons en terminant que ces observations confirment les observations rapportées dans le rapport exhaustif de suivi préparé par Mission HGE (2005a). Les constations décrites ici sont examinées dans la section suivante en regard des valeurs historiques mesurées des paramètres indicateurs.

5.4 Évolution du panache de contamination de l'eau souterraine

5.4.1 Généralités

Les premières observations confirment que la majorité des résultats se situe dans le même ordre de grandeur que les résultats obtenus antérieurement pour les eaux souterraines. Les valeurs mesurées en août 2005 ressemblent à celles mesurées lors des campagnes de l'année précédente, à quelques exceptions près. Parmi les séries de données, on note occasionnellement quelques valeurs plus élevées pour quelques paramètres, mais il est difficile de statuer sur la nature de ces variations occasionnelles avec les campagnes antérieures. De façon générale, les résultats s'inscrivent donc dans les valeurs et tendances mesurées historiquement et corroborent aussi les conclusions énoncées dans le rapport synthèse sur la qualité des eaux souterraines et de surface de Mission HGE (2005a).

On constate également pour certains puits d'observation des hausses et des baisses graduelles dans les concentrations de certains paramètres, mais ces dernières ne sont pas systématiques pour un même puits d'observation; i.e, la concentration de certains éléments augmente alors que celle pour d'autres diminue dans le même puits. De même, certains éléments ont des concentrations qui diminuent après avoir atteint un sommet lors des campagnes précédentes.

Finalement, mentionnons que les concentrations mesurées dans les puits semblent également varier en fonction de leur localisation dans le réseau d'écoulement des eaux souterraines.

5.4.2 Évolution par secteur

Dans le but d'établir des rapprochements dans les données et d'évaluer des tendances, les résultats ont été examinés en fonction de la localisation des puits d'observation. Ainsi, les puits d'observation qui ont été échantillonnés dans le cadre de la présente campagne ont été regroupés selon leur position par rapport aux différentes cellules et en fonction du régime d'écoulement des eaux souterraines (piézométrie de HGE, 2003a). Plus spécifiquement, les puits sont regroupés selon les secteurs suivants:

- Cellule 1: P-9, P-14, P-15, P-34-A, P-34-B, P-34-C, P-35-A, P-35-B, P-35-C;
- Cellules 2A et 2B: P-32, P-33-A, P-33-B, P-33-C, P-42;
- Cellule 2 C: P-39, P-50-R, P-51, P-64, P-65, P-66, P-68.

Les autres puits (P-24, P-30, F-308-A et F-311-A) représentent des conditions moins critiques pour la contamination, notamment en ce qui concerne la rivière St-Joseph. Les puits P-24 et P-30 font référence à la Cellule 3, et n'ont démontré jusqu'à maintenant que peu de variations dans la qualité de leur eau. La série de puits récents P-407 À P-413 ne comprend pas assez de données historiques pour évaluer des tendances.

Parmi les séries de résultats d'analyse chimique des puits d'observation suivis dans les différents secteurs considérés, l'évolution des concentrations a été examinée pour les éléments traceurs déjà étudiés, soit : les chlorures, la DCO, le fer, le manganèse, les nitrates et nitrites, l'azote ammoniacal, les sulfates, les sulfures et quelques métaux. Les graphiques de ces séries sont présentés à l'annexe 5 seulement pour les éléments démontrant des variations significatives et un nombre suffisant de données. Peu de données historiques étaient disponibles pour le manganèse. L'annexe 6 présente les statistiques descriptives des séries.

Notons que l'on observe la présence d'une périodicité pour certains paramètres dans quelques puits. Celle-ci pourrait être attribuée à des effets saisonniers influençant la campagne d'échantillonnage ou au fait que les secteurs des différentes cellules ont été remblayés à différentes périodes successives. Les données n'ont pas fait l'objet d'une désaisonnalisation compte tenu de leur faible nombre et du fait qu'une information qualitative pouvait y être facilement tirée.

De façon générale, on peut résumer les constations suivantes pour les différents secteurs :

Cellule 1:

Une augmentation progressive des concentrations en chlorures pour P-14, P-15, P-35-B et P-35-C; une diminution après une série de cycles pour P-9, P-34-A, P-34-B et P-34-C; les valeurs demeurent relativement faibles et constantes pour P-35-A.

Une légère augmentation des valeurs de DCO pour P-14 et P-35-B; une diminution après l'atteinte d'un sommet pour P-34-A, P-34-B et P-34-C; les valeurs demeurent relativement constantes pour P-9 et P-15 et très faibles pour P-35-A. et P-35-C.

Pour les concentrations en fer, on observe une légère augmentation progressive dans les puits P-14 et P-15; des diminutions dans les puits P-9, P-34-A, P-34-B et P-34-C; les concentrations demeurent relativement faibles et constantes dans P-35-A, P-35-B et P-35-C.

Une légère augmentation progressive dans les concentrations en nitrates et nitrites avec la présence de 2 sommets (mai 2003; mai et octobre 2004) a été observée pour P-9, P-34-A et P-34-B avant de retrouver des plus faibles valeurs; les concentrations demeurent relativement faibles et constantes pour tous les autres puits, soit P-14, P-15, P-34-C, P-35-A, P-35-B et P-35-C.

Une augmentation progressive des concentrations en azote ammoniacal pour P-14 et P-34-C après une série de cycles; une diminution après une série de cycles pour P-9 et P-34-A; les valeurs demeurent relativement constantes avec plusieurs cycles pour P-34-B et très faibles pour P-15, P-35-A, P-35-B et P-35-C.

Une augmentation progressive dans les concentrations en sulfates avec la présence de quelques cycles a été observée pour P-9, P-14, P-34-A, P-34-B et P-34-C; les concentrations demeurent relativement faibles et constantes pour P-15, P-35-A, P-35-B et P-35-C.

Peu de données sont disponibles sur les sulfures. Les concentrations demeurent en général relativement faibles et constantes. Notons une forte concentration ponctuelle mesurée en novembre 1995 dans les puits P-34-A, P-34-B et P-34-C.

Cellules 2A et 2B:

Une augmentation progressive des concentrations en chlorures est observée pour P-42; une diminution des concentrations semble s'amorcer pour P-33-A, P-33-B et P-33-C après une suite de cycles de hautes et basses concentrations; les valeurs demeurent relativement faibles et constantes pour P-32.

Les valeurs de DCO semblent augmenter graduellement pour P-33-A, P-33-B et P-33-C; les valeurs demeurent relativement faibles et constantes pour les puits P-32 et P-42.

Pour les concentrations en fer, on observe une augmentation progressive dans les puits P-33-A, P-33-B et P-33-C; les concentrations demeurent relativement faibles et constantes pour les puits P-32 et P-42.

Les concentrations en nitrates et nitrites demeurent relativement faibles et constantes pour tous les puits : P-32, P-33-A, P-33-B, P-33-C et P-42.

Une très légère augmentation des concentrations en azote ammoniacal semble se dessiner pour P-33-C; les valeurs demeurent relativement constantes et faibles pour P-32, P-33-A, P-33-B et P-42.

Une augmentation progressive dans les concentrations en sulfates a été observée pour P-32, P-42 et P-33-C; une diminution des concentrations semble s'amorcer pour P-33-A; les concentrations demeurent relativement faibles et constantes pour P-33-B.

Peu de données sont disponibles sur les sulfures. Les concentrations demeurent en général relativement faibles et constantes.

Cellule 2C:

Une augmentation progressive des concentrations en chlorures a été remarquée pour P-39, P-50-R, P-51, P-64 et P-68; une diminution après l'atteinte d'un sommet pour P-65; les valeurs demeurent relativement faibles et constantes pour P-66.

Une augmentation progressive des valeurs de DCO pour P-39, P-50-R et P-68; une diminution après l'atteinte d'un sommet pour P-51, P-64 et P-65; les valeurs demeurent relativement faibles et constantes pour P-66.

Pour les concentrations en fer, on observe une augmentation progressive notable uniquement dans le puits P-68; une diminution après l'atteinte d'un sommet pour P-51; les concentrations demeurent relativement faibles et constantes pour tous les autres puits : P-39, P-50-R, P-64, P-65 et P-66.

Une diminution dans les concentrations en nitrates et nitrites a été observée après une série de cycles élevés entre 1997 et 2002 pour P-51; les concentrations demeurent relativement faibles et constantes pour tous les autres puits : P-39, P-50-R, P-64, P-65, P-66 et P-68.

Les concentrations en azote ammoniacal demeurent relativement faibles et constantes pour tous les puits : P-39, P-50-R, P-51, P-64, P-65, P-66 et P-68.

Les concentrations en sulfates demeurent relativement faibles et constantes pour tous les puits: P-39, P-50-R, P-51, P-64, P-65 et P-66, à l'exception de P-68 où une hausse s'est amorcée au dernier échantillonnage.

Peu de données sont disponibles sur les sulfures. Les concentrations demeurent en général relativement faibles et constantes.

5.4.3 Migration du panache de contamination

Les caractéristiques des séries de données disponibles pour la majorité des puits (séries incomplètes et non consistantes; les différentes séquences d'échantillonnage avec effets saisonniers; et la séquence d'utilisation du site, i.e. enfouissement peu documenté à différents moments dans les différentes cellules) limitent à notre avis l'utilisation de techniques d'analyse statistique poussées pour l'interprétation des données. Toutefois, une comparaison entre les observations des sections précédentes traitant de la position du panache actuel et de l'évolution historique des concentrations permet de tirer les conclusions suivantes :

- Le front du panache de contamination en aval de la cellule 1 a atteint la rivière. Les concentrations pourraient encore augmenter dans ce secteur près de la rivière pour les paramètres retardés, mais elles semblent vouloir diminuer près des cellules.
- Le front de contamination en aval de la cellule 2A et 2B semble être en progression vers la rivière et l'aurait rejoint. Il est difficile de statuer si les concentrations des autres éléments risquent d'augmenter dans les puits situés près de la rivière, puisqu'il y a peu de puits d'observation dans ce secteur. On peut considérer que le front des paramètres retardés n'a peut-être pas encore atteint la rivière.
- Le front de contamination en aval de la cellule 2C semble être en progression vers la rivière sans l'avoir rejoint. Il serait le moins développé des panache de migration, probablement causé par l'enfouissement plus tardif dans ce secteur.
- Les secteurs des puits P-24, P-30, P-32, P-35-A et P-66 semblent peu affectés par une quelconque contamination.

D'après les concentrations en chlorures mesurées historiquement dans tous les puits d'observation étudiés, il n'y aurait pas eu de dépassements des critères du RDS pour ce paramètre (voir annexe 5) dans les puits situés à proximité de la rivière. Donc, les concentrations futures ne devraient pas dépasser les critères du RDS pour les chlorures dans les puits près de la rivière. Toutefois, ce n'est pas évident pour d'autres paramètres. Des valeurs en DCO excédant les critères du RDS ont déjà été observées dans ces puits, tout comme des concentrations élevées en fer et coliformes totaux. Dans ce dernier cas, ces concentrations pourraient résulter d'un bruit de fond plus élevé relié à la présence des sols organiques interceptés par les crépines des puits ou de l'infiltration des eaux de ruissellement.

Ces observations concordent avec l'analyse décrite par Mission HGE dans leur rapport de 2005(a). Les observations sur la migration du panache ont été examinée plus en détail à l'aide des séries temporelles disponibles les plus complètes et représentatives sur les chlorures. La figure 5.3 présente les variations spatiales des concentrations en chlorures en 1993, 1998, 2000, 2003 et 2005.

On peut observer sur les figures le déplacement des zones où des fortes concentrations en chlorures sont observées dans les puits. Il y aurait d'abord eu une zone de contamination plus importante, détectée au moins en 1993 et encore observée aujourd'hui, en aval de la cellule 1; et une autre zone centrée sur le puits P-12 dans le secteur entre les cellules 1 et 2A. La zone près de la cellule 1 semble avoir atteint son apogée autour de 2003 en terme d'étendue des fortes concentrations. Des concentrations plus importantes seraient également apparues en aval des cellules 2B et 2C après 1998 sur la base des observations à P-51, soit à la période qui correspond à l'année de mise en opération de la cellule 2C (l'aménagement des lagunes de traitement datait quant à lui de 1992). Il faut conserver des réserves sur cette figure car les séries n'étaient pas toujours complètes pour tous les puits et les concentrations variaient au cours d'une même année. En ce sens, ces observations spatiales doivent servir uniquement à illustrer la disposition du panache de migration dans le temps.

En considérant comme vitesse de migration de contaminants dans les eaux souterraines des valeurs de 20 à 60 m/an, il faudrait donc un temps de l'ordre de 15 à 50 ans aux chlorures pour migrer de l'extrémité amont de la cellule 1 et rejoindre la rivière, et de l'ordre de 12 et 38 ans pour migrer de l'extrémité amont de la cellule 2B. À partir de l'extrémité aval des cellules, il prendrait entre 3 et 13 ans aux chlorures pour migrer et rejoindre la rivière. Ces temps de migration assez courts corroborent les observations des panaches en autant que l'on considère

que la masse maximale est libérée au moment de la mise en place des déchets. Naturellement, le fait que différentes parties des cellules n'aient pas été exploitées simultanément fait en sorte que différents panaches peuvent se superposer ce qui complique l'interprétation. De plus, nous sommes d'avis que ces vitesses de migration, basées sur la conductivité hydraulique moyenne de l'aquifère, sous-estiment la vitesse réelle de migration dans la partie supérieure de l'aquifère qui est plus perméable et plus contaminée.

5.5 <u>Évolution de la qualité de l'eau de la rivière St-Joseph</u>

Les résultats de la campagne d'échantillonnage des eaux de surface d'août 2005 ont permis de compléter les séries temporelles de données recueillies depuis 1982 pour S-2 et S-3, depuis 1993 pour S-1 et depuis 1996 pour S-4. Les séries sont peu complètes en ce qui a trait au nombre de paramètres suivis, à l'exception des concentrations en chlorures, azote ammoniacal, sulfates, et DCO. Les chlorures et la DCO sont les paramètres présentant des valeurs qui varient le plus, alors que l'azote ammoniacal montre des faibles valeurs souvent près du niveau de détection. Les concentrations sont pour la plupart plus faibles que celles observées dans l'eau souterraine. Les graphiques de l'évolution des concentrations sont présentés à l'annexe 5 et l'annexe 6 présente les statistiques descriptives des séries.

On constate pour les chlorures et la DCO plusieurs cycles dans les séries de données probablement associés à des phénomènes saisonniers ou ponctuels. Ces cycles ne semblent pas coïncider avec les cycles observés dans les concentration mesurées dans les puits aux mêmes périodes. Ils sont donc plus probablement reliés à la variation du taux de dilution, donc du débit de la rivière.

On ne constate dans les données historiques aucune tendance évidente à l'augmentation des paramètres au fil des années. Néanmoins, on constate une nette variation des concentrations selon le sens de l'écoulement de la rivière. Ceci est particulièrement évident sur le graphique des chlorures et avait déjà été noté dans les résultats d'analyses chimiques des eaux de surface de la présente campagne (voir section 4.2). Il semblerait donc que la charge de contaminants dans la rivière augmenterait de l'amont à l'aval lors de son passage le long du site particulièrement entre les sites d'échantillonnage S-2 et S-3. Les concentrations augmentent également dans S-4, mais ce dernier site est situé de l'autre côté de l'autoroute et serait potentiellement influencé par l'épandage de sels déglaçants. Notons que le site S-3 représente le point de résurgence des eaux souterraines le plus en aval du lieu d'enfouissement. Le fait que la dégradation de la qualité de la rivière soit observable dès 1982 appuie l'hypothèse que les vitesses de migration pourraient être supérieures à celles calculées.

6. <u>ASPECTS HYDROGÉOLOGIQUES</u>

6.1 Commentaires sur la piézométrie

6.1.1 Piézométrie générale du site

Les cartes piézométriques qui ont été préparées dans le cadre des différentes études présentent toutes un dôme piézométrique dans le secteur de la cellule 3. Ce dôme représente donc un élément important du régime d'écoulement des eaux souterraines puisqu'il semble indiquer une zone de recharge et qu'il chevauche la ligne de partage pour l'écoulement des eaux souterraines entre les bassins de la rivière Chaloupe et la rivière St-Joseph. Le mandat de la présente étude demandait également une confirmation de l'existence de ce dôme ainsi que la détermination, si possible, de son origine.

6.1.2 Caractéristiques attribuées à la formation d'un dôme piézométrique

Mentionnons pour débuter qu'il est normal de retrouver un point haut dans la surface de la nappe phréatique entre 2 cours d'eau, ceci bien sûr dans un système où il existe un écoulement de l'eau souterraine vers les cours d'eau et une recharge sur la surface concernée. De façon générale, la présence d'un dôme piézométrique localisé dans un régime d'écoulement des eaux souterraines peut être attribuée aux conditions suivantes :

- 1. La présence locale d'une zone plus perméable à la surface du sol qui favorise une plus grande infiltration, donc une plus grande recharge.
- 2. Le dôme peut aussi se localiser au point le plus distant des zones de décharge de l'aquifère.
- 3. Dans le cas d'un aquifère mince, la topographie du fond de l'aquifère peut aussi influencer la piézométrie. On observera alors un dôme dans la piézométrie au-dessus des points hauts du fond de l'aquifère.
- 4. La présence de structures artificielles de recharge (tuyau d'exhaure, sortie de drain, etc.) peut aussi causer une remontée de la surface de la nappe.

Par conséquent, il est essentiel d'examiner les données sur les matériaux rencontrés dans les forages et la stratigraphie régionale pour solutionner cette interrogation.

6.1.3 Origine possible du dôme piézométrique

Ainsi, le modèle hydrogéologique conceptuel du site nous informe de l'existence d'un aquifère phréatique dans les dépôts alluvionnaires de sable près de la surface. On retrouverait, sous-jacent à ces dépôts, des formations géologiques moins perméables, de nature argileuse et silteuse. Ces conditions s'apparentent donc aux conditions décrites à l'hypothèse n°3 citée plus haut.

Ainsi, en regardant les données stratigraphiques provenant des puits d'observation qui ont été aménagés au fil des ans sur le site, on constate que le secteur où est situé le dôme piézométrique correspond à une zone où l'épaisseur des dépôts de sable est minimale pour des élévations de la surface du sol assez similaires sur l'ensemble du site. La figure 6.1 permet de mieux visualiser la distribution spatiale de l'épaisseur des dépôts de sable par rapport à la

localisation du dôme piézométrique. On en conclut donc que le fond de l'aquifère de surface est plus élevé à cet endroit.

Il semble ainsi, que le contexte géologique du site soit responsable de la formation du dôme piézométrique. Il faut ajouter que les hypothèses n°2 et possiblement n°1 peuvent aussi être valables au site du dôme observé.

6.2 <u>Commentaires sur le potentiel aquifère de la région</u>

6.2.1 Définition du potentiel aquifère selon le REIMR

Il est mentionné dans l'article 16 du REIMR qu'il est interdit d'aménager un lieu d'enfouissement technique sur un terrain en dessous duquel se trouve une nappe libre ayant un potentiel aquifère élevé. Dans le cadre du règlement, le potentiel aquifère est déterminé en évaluant, à l'aide d'essais de pompage, la possibilité de soutirer de l'aquifère, en permanence et à partir d'un même puits, un débit d'au moins 25 m³/heure. Cet article du règlement a pour objectif de préserver les ressources en eau souterraine au Québec.

Bien qu'il existe plusieurs méthodes de développement des ressources en eau souterraine (puits de surface, pointes filtrantes, drains, etc.), l'utilisation d'un puits tubulaire représente une des façons les plus efficaces et économiques pour le pompage d'un aquifère. Les conditions optimales de pompage dans un tel puits visent à soutirer un débit maximum d'eau (pour les besoins) tout en favorisant un rabattement minimal du niveau d'eau dans le puits pompé. La valeur du rabattement optimal relève de contraintes physiques et techniques (conductivité hydraulique de la formation, efficacité du puits, épaisseur saturée, etc.) avec comme objectif de ne pas dénoyer le puits ni sa crépine.

6.2.2 Résultats de l'essai de pompage

La compagnie les Consultants HGE inc. (HGE) a ainsi réalisé en 2001 pour le compte de DRN un essai de pompage dans un puits aménagé spécialement pour cet effet. Ce puits d'un diamètre de 200 mm a été aménagé dans un forage de 400 mm de diamètre jusqu'à une profondeur de 11 m, soit pour intercepter la partie la plus perméable de l'aquifère (dépôts de sable fin à moyen avec traces de silt sur les 10 premiers mètres). Les dépôts de sable plus profonds devenaient plus fins et la proportion de silt augmentait et on notait la présence de lits de silt argileux. Les résultats des essais de pompage ont permis à HGE de conclure qu'un débit optimal de 8 m³/heure peut être soutiré de la formation aquifère, ce qui signifie que l'aquifère granulaire de sable sur le site de DRN ne possède pas un potentiel élevé selon la définition du REIMR.

En général, il est recommandé d'installer la crépine d'un puits uniquement dans les sections les plus perméables d'un aquifère, bien qu'une contribution en eau peut également provenir des matériaux plus fins. En effet, il a été reconnu que les dépôts meubles sur le site de DRN ont tendance à contenir une proportion croissante de matériaux fins avec l'augmentation de la profondeur, ce qui diminue la perméabilité des dépôts. Cette raison justifiait l'aménagement du puits d'essai qui a été construit.

6.2.3 Résultats de la modélisation numérique

Bien que les études de DRN prouvent le contraire, il a été soulevé lors des audiences du BAPE que l'aquifère de sable sur le site pouvait accommoder des puits produisant un débit supérieur à 25 m³/heure. Cette affirmation était basée sur un concept de puits différent de celui présenté par DRN dans les études de HGE, en considérant entre autre une plus grande profondeur au puits. De plus, d'autres intervenants ont affirmé sur la base d'un schéma de puits différent de celui prescrit dans le REIMR (ensemble de pointes filtrantes au lieu d'un puits tubulaire), que l'aquifère avait aussi un fort potentiel.

En conséquence, DRN a mandaté la compagnie Tecsult inc. (Tecsult) afin de réaliser une étude technique par modélisation numérique (DA 33) pour évaluer le potentiel aquifère des formations de sable selon les points soulevés lors des audiences. La modélisation a été réalisée en 2 étapes successives : la première étape visait la calibration du modèle avec les résultats de l'essai de pompage réalisé par HGE pour le puits de 11 m de profondeur; la seconde étape a permis d'évaluer l'effet anticipé du pompage d'un puits de 25 m de profondeur et le débit optimal d'exploitation. Les résultats de la modélisation ont permis à Tecsult de conclure qu'un débit optimal de 16 m³/heure peut être soutiré de la formation aquifère pour un puits plus profond. Ces résultats confirmeraient les résultats de l'étude de HGE indiquant que l'aquifère granulaire de sable fin sur le site de DRN ne possède pas un potentiel élevé selon la définition du REIMR.

6.2.4 Estimation du potentiel aquifère

Une revue de l'étude technique de Tecsult et du rapport de HGE a été réalisée dans le cadre de ce mandat. L'examen des différents documents produits et la connaissance de la stratigraphie du site, acquise dans le cadre de cette étude, indiquent que le potentiel aquifère des dépôts de sable près de la surface décroît en fonction de l'augmentation de la profondeur. Ceci résulterait d'une augmentation de la proportion en matériaux plus fins et moins perméables en plus grande profondeur. Ces conditions ont été rapportées dans de nombreux forages réalisés sur le site (voir annexe 1) et les valeurs de conductivité hydraulique estimées dans les puits et forages les confirment également (voir Tecsult).

L'utilisation d'une approche par modélisation numérique pour évaluer le potentiel aquifère nous apparaît ici très valable compte tenu des données disponibles sur les propriétés hydrauliques des sols. La méthodologie décrite dans l'étude de Tecsult et les calculs qui y sont détaillés semblent cohérents et les résultats concordent avec le cadre hydrogéologique observé sur le site. Bien sûr, les résultats d'une modélisation ne constituent qu'une représentation simplifiée de la réalité, mais compte tenu du contexte géologique, ils semblent à notre avis être représentatifs des conditions au site.

De façon générale, la méthode retenue pour évaluer le potentiel aquifère d'un site dans le cadre du REIMR, c'est-à-dire, en évaluant le débit optimal pour le pompage d'un puits unique, est une approche qui pourrait être débattue, mais elle représente à notre avis une approche réaliste pour évaluer le développement potentiel des ressources en eau souterraine. Le site étudié semble permettre préférablement l'aménagement de puits de faible profondeur, compte tenu de la faible épaisseur de l'aquifère superficiel de sable. La perméabilité des dépôts est assez forte mais la faible épaisseur de l'aquifère limite les rabattements disponibles dans les puits. La revue des données sur la stratigraphie indique que l'épaisseur des dépôts de sable les plus grossiers varie entre 4,6 et 21,3 m pour une moyenne de 11,8 m. Ainsi, la profondeur de

construction des puits se situera préférablement dans cet intervalle. Les variations en épaisseur et granulométrie font en sorte que certains puits qui pourraient être aménagés seront plus productifs que d'autres, mais les débits estimés seront sans doute dans un même ordre de grandeur que ceux estimés dans les études de HGE et de Tecsult, soit inférieurs à 25 m³/heure. Cette constatation suggère que le potentiel de l'aquifère est limité pour l'aménagement de puits de haute capacité.

6.3 <u>Impact sur la nappe du pompage et de l'interception des précipitations</u>

6.3.1 Concept d'enfouissement

Le concept d'aménagement proposé par DRN a été élaboré en fonction des exigences du REIMR pour la construction d'un lieu d'enfouissement technique. En conséquence, le projet d'agrandissement du site de DRN consiste à construire un mur étanche de 1 m d'épaisseur en périphérie de la nouvelle cellule d'enfouissement prévue. La base du mur serait enfoncée dans la couche d'argile silteuse en profondeur. Un système de pompage serait également mis en place pour maintenir le niveau de l'eau sous la base des déchets et recueillir le lixiviat. L'opération du système permettrait d'éliminer le risque de la migration du lixiviat à l'extérieur du site et la contamination des eaux souterraines.

L'aménagement de cette nouvelle structure étanche aura comme incidence directe une modification du régime d'écoulement des eaux souterraines. Le recouvrement étanche du site, limitant ainsi les infiltrations, serait en principe compensé par la ré-injection des eaux de ruissellement dans l'aquifère en périphérie du système. Toutefois, il y aurait une quantité importante d'eau qui s'infiltrerait dans la cellule suite à l'augmentation des gradients hydrauliques entre l'extérieur et l'intérieur de la cellule. Le rabattement ainsi créé pourrait donc avoir un effet sur la surface de la nappe phréatique dans le secteur et pourrait influencer le niveau d'eau dans les puits privés environnants. Cet impact a été analysé par HGE dans une étude en 2003.

6.3.2 Commentaires sur l'étude de modélisation

L'outil utilisé par HGE pour réaliser cette analyse est la modélisation numérique de l'aquifère. La méthode utilisée et les résultats sont présentés dans leur rapport de 2003 (Consultants HGE inc., 2003a : mise à jour des impacts sur l'eau souterraine associés à l'établissement d'une cellule d'enfouissement étanche à Saint-Thomas) que nous avons consulté. Malheureusement, le rapport ne donne que très peu d'information sur l'exercice de modélisation. Le logiciel utilisé n'est pas identifié et le modèle conceptuel utilisé n'est décrit que très sommairement. La discrétisation et la calibration ne sont pas présentées et les conditions limites ne sont que partiellement décrites.

De plus, le taux d'infiltration au travers des murs de la cellule a été fixé à 1 ou 5 l/s selon la période d'opération, mais cette évaluation n'est pas documentée. De même, le taux d'infiltration au travers du fond de la cellule n'est pas documenté et ne semble pas avoir été considéré. Le rapport de HGE est donc incomplet et ne permet pas une évaluation ou une discussion sur la méthode utilisée ou sur les résultats obtenus.

Cependant, notre expérience de ce genre de modélisation nous porte à croire que les impacts pourraient potentiellement être plus importants si les écoulements au travers du fond de la

cellule sont considérés. Malheureusement, le manque de détails dans le rapport de HGE ne nous permet pas de conclure sur la validité de cet exercice de modélisation .

6.3.3 Commentaires sur l'évaluation des impacts

Comme il est difficile de conclure sur l'étude de modélisation, nous devons plutôt recourir à des principes hydrogéologiques généraux pour évaluer l'impact potentiel de la cellule d'enfouissement étanche. L'aquifère considéré est mince et a donc une faible transmissivité même si sa perméabilité est bonne (nous avons déjà expliqué pourquoi cela limitait la productivité de l'aquifère). Cette faible transmissivité limite également l'extension des rabattements. Donc, même si des rabattements importants étaient observés à proximité de l'enceinte du LET, il est improbable que des rabattements importants soient observés à distance de cette enceinte. Le problème potentiel vient plutôt de la grande vulnérabilité du type de captage utilisé dans la région. Les puits de surface et les pointes filtrantes sont affectés sensiblement même lorsque les rabattement sont faibles.

7. <u>DISCUSSION SUR LE POTENTIEL DE CONTAMINATION</u>

7.1 Qualité des eaux souterraines et de surface

Les résultats des analyses chimiques des échantillons d'eau recueillis au cours de la présente campagne, ainsi que ceux prélevés lors des campagnes précédentes, ont permis d'évaluer la qualité des eaux souterraines et de surface dans le secteur du lieu d'enfouissement sanitaire de DRN. Les résultats confirment une contamination de l'eau souterraine dans les puits d'observation situés en aval des cellules d'enfouissement par rapport aux valeurs naturelles (bruit de fond dans les puits témoins). Néanmoins, cette situation n'est pas une surprise puisque le site est opéré selon un mode d'atténuation naturelle.

Le site de DRN est en opération selon le cadre réglementaire du Règlement sur les déchets solides (1978) qui s'applique pour le secteur des anciennes cellules (cellules 1, 2A, 2B et 2C). Il n'existe pas de critères de qualité pour les eaux souterraines, mais seulement des critères pour les résurgences. Or, aucune résurgence des eaux souterraine n'est observée entre les anciennes cellules et la rivière St-Joseph. Toutefois, les eaux souterraines sont en contact hydraulique avec la rivière St-Joseph et celles-ci font résurgence dans le fond de la rivière. Cette hypothèse est appuyée par les forts gradients hydrauliques verticaux et ascendants mesurés dans les études précédentes dans les puits près de la rivière. De plus, il ne semble pas y avoir de concentrations très élevées du côté sud de la rivière. Cette dernière est située entre 180 et 315 m des cellules et la vitesse de migration potentielle de contaminants dans l'eau souterraine serait de l'ordre de 20 à 60 m/an selon la nature des sols et pourrait même être plus rapide. Si l'on considère l'eau souterraine dans les puits situés les plus près de la rivière comme une résurgence, il y a quelques dépassements en DCO et en coliformes totaux principalement entre P-409 et P-413 en fonction du règlement applicable (RDS). dépassements en ces paramètres pourraient toutefois être associés au mode de construction des puits d'observation dans ces secteurs et aux teneurs naturelles (bruit de fond dans P-407) résultant de la présence de sols riches en matière organique interceptés dans les crépines et aussi à l'infiltration d'eau de ruissellement.

De plus, les concentrations mesurées dans plusieurs puits sur le site pour quelques paramètres, notamment les chlorures, l'azote ammoniacal, les sulfures, le fer, le manganèse, le nickel et le sodium (ces 2 derniers pour 2 puits seulement), dépassent les critères du nouveau Règlement sur l'élimination et l'incinération des matières résiduelles (REIMR) qui s'appliquera à la zone d'agrandissement projetée et à la cellule 3.

La contamination de l'eau souterraine semble avoir atteint un stade mature dans le sens où les concentrations les plus élevées pour certains paramètres indicateurs conservatifs (chlorures, DCO et fer) sont rencontrées dans les puits situés très près de la rivière et que l'on observe une diminution des concentrations dans les puits plus près des cellules. Toutefois, ceci n'est pas le cas pour d'autres paramètres dont les valeurs maximales se trouvent dans des puits situés plus en amont. Ce sont les paramètres non conservatifs comme les cations métalliques et les composés organiques dont la progression est retardée par les interactions avec les matériaux de l'aquifère. À noter que les concentrations de tous les paramètres des groupes métaux lourds, phénols, HP C₁₀-C₅₀ et COV sont soit très faibles, soit sous la limite de détection analytique.

La contamination étant observée jusque dans des puits d'observation se situant à proximité de la rivière St-Joseph, il est donc normal qu'une certaine charge de contaminants chimiques fasse

résurgence dans la rivière St-Joseph. Ceci est appuyé par le fait qu'on observe une variation des concentrations de certains éléments analysés entre l'amont et l'aval de la rivière, après le passage de l'eau dans la rivière en aval des cellules d'enfouissement. Les données historiques sur la chimie de l'eau de la rivière St-Joseph et les données de la présente campagne corroborent cette hypothèse.

Des contaminants qui migrent dans l'eau souterraine font donc résurgence par le lit de la rivière et y sont dilués par l'eau de la rivière. Le facteur de dilution de ces produits peut être estimé en fonction du débit d'apport des eaux souterraines pour la section d'aquifère en aval à l'aide de la loi de Darcy qui implique :

Q = KAi

οù

Q: débit par unité de surface (m³/s)

A: aire en aval des cellules qui contribue à la recharge de la rivière = épaisseur moyenne estimée saturée de l'aquifère au droit de la rivière (estimé 1,5 m) X largeur totale de la zone des cellules (1 600 m)

K: conductivité hydraulique des dépôts de sable mesurée sur le site = 6,2 x 10⁻⁵ m/s (moyenne pour les 11 premiers mètres selon le rapport de Tecsult, 2005a).

i: gradient hydraulique horizontal moyen selon les cartes piézométriques = 0,006 m/m

En appliquant cette formule à la zone de contamination potentielle en aval des cellules, il est possible d'estimer l'apport d'eau de l'aquifère dans la rivière à un débit moyen de 0,89 l/s.

Ainsi, il est possible de calculer un facteur de dilution en considérant l'apport de l'eau de l'aquifère dans le débit à l'étiage de la rivière St-Joseph. Il n'y a malheureusement pas de données disponibles sur le débit à l'étiage de la rivière St-Joseph. Toutefois, les débits retenus pour le calcul des objectifs environnementaux de rejet (OER) du site dans la rivière La Chaloupe, située au *nord* du site, sont respectivement de 218, 322 et 353 l/s, respectivement pour les débits d'étiage Q ₁₀₋₇, Q ₅₋₃₀ et Q ₂₋₇. Ces valeurs ont été calculées par le Centre d'expertise hydrique du Québec pour un bassin drainé d'environ 135 km² de la rivière La Chaloupe. Le bassin de la rivière St-Joseph est estimé à près de 16 km². En ce sens, dans une même proportion, les débits d'étiage Q ₁₀₋₇, Q ₅₋₃₀ et Q ₂₋₇ pourraient être estimés à 26, 38, 42 l/s, soit 12 % des débits de la rivière La Chaloupe. L'apport en eau de l'aquifère correspondrait donc à un facteur de dilution moyen de 29 à 47 fois en période d'étiage. Ceci témoigne du faible pouvoir de dilution dans la rivière St-Joseph qui est attribuable à la dimension relativement petite de son bassin versant et explique que l'effet de ces résurgences soit si apparent dans les résultats d'analyse.

Le tableau 7-1 présente les critères de résurgence des eaux souterraines dans les eaux de surface pour différents paramètres considérés dans la PPRSTC en relation avec les concentrations mesurées dans l'eau souterraine prélevée dans les puits d'observation situés à proximité de la rivière St-Joseph (P-407 à P-413). La norme du PPRSTC est basée sur un facteur de dilution des eaux souterraines dans un rapport de 100 dans les eaux de surface, alors que comme nous l'avons estimé ici, le facteur de dilution dans la rivière St-Joseph serait de l'ordre de 29. On constate alors que pour une dilution de 29 fois, il n'y aurait pas de dépassement des critères de rejet. Tous les éléments se trouvent en concentrations assez faibles pour respecter les critères de qualité des eaux de surface.

7.2 <u>Impacts sur le régime d'écoulement des eaux souterraines</u>

L'exploitation actuelle du lieu d'enfouissement sanitaire de DRN à St-Thomas ne provoque pas de perturbations importantes sur le régime d'écoulement des eaux souterraines. Les opérations de pompage du lixiviat y sont limitées. Par contre, l'opération du site par atténuation naturelle provoque une contamination des eaux souterraines du côté de la rivière St-Joseph.

L'inventaire des résidences du secteur en périphérie du site indique que celles-ci sont approvisionnées par des puits privés. Ces puits sont principalement des puits de surface ou des pointes filtrantes qui sont en général aménagés à faible profondeur dans l'aquifère de sable. Les résultats de la présente campagne où des puits privés ont été échantillonnés n'ont pas démontré de contamination de l'eau souterraine supérieure au critère de potabilité, sauf pour un paramètre. Les résultats des campagnes d'échantillonnage antérieures ont démontrés des dépassements aux critères dans quelques résidences sur tous les chemins ceinturant le site, notamment pour le fer et manganèse, les nitrates et les nitrites et quelques puits pour les coliformes totaux. Les résidences sont toutes situées à l'extérieur des corridors de contamination des eaux souterraines qui sont localisés principalement au sud des anciennes cellules et en amont de la rivière St-Joseph. On peut en conclure que ces problèmes sont plus vraisemblablement attribuables à des conditions naturelles (Fe, Mn) ou aux activités agricoles du secteur ou à des installations septiques.

L'exploitation future du lieu d'enfouissement sanitaire de DRN comme lieu d'enfouissement technique provoquera par contre des perturbations sur le régime d'écoulement des eaux souterraines du secteur immédiat du site. L'étude de modélisation effectuée pour le compte de DRN semblent toutefois démontrer que les rabattements produits n'auront qu'un faible impact sur les résidences situées en périphérie du site. Nous n'avons cependant pas pu vérifier pleinement la validité de cette étude de modélisation et certaines questions demeurent. Notre analyse du contexte hydrogéologique nous indique cependant que les impacts sur les puits privés seront très faibles et ne se manifesteront que par de légers abaissements des niveaux d'eau dans les puits.

L'opération du site par contrôle hydraulique du lixiviat à l'intérieur de l'enceinte des cellules éliminera les risques de contamination des eaux souterraines, tant et aussi longtemps que le système restera en opération, ce qui correspond à la dégradation complète des matières résiduelles. Si le système n'est plus en opération, il y aura migration des contaminants vers l'extérieur du site.

Tableau 7.1: Concentrations estimées dans les résurgences selon le facteur de dilution

Groupe	Paramètre	Unités	PPRSTC (dilution de	Concentration dans les résurgences (pour une dilution de	P-407	P-408	P-409	P-410	P-411	P-412	P-413	Valeur moyenne des concentrations
			100)	29 fois)								
					2005-08-18	2005-08-17	2005-08-18	2005-08-18	2005-08-16	2005-08-23	2005-08-18	
Inorg.	Chlorures	μg/L	860000	<u>249 400</u>	1 200	38 400	70 500	240 000	714 000	494 000	45 100	74 217
	Sulfures (en H2S)	μg/L	200	<u>58</u>	< 40	120	< 40	< 40	< 40	< 40	< 40	< 40
Métaux	Arsenic Soluble	μg/L	340	<u>99</u>	1	< 1	5	1	1	13	1	2
	Cadmium Soluble	μg/L	2,1	<u>0,6</u>	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
	Cuivre Soluble	μg/L	7,3	<u>2</u>	1	1	12	2	1	1	6	2
	Mercure Soluble	μg/L	0,13	<u>0,038</u>	< 0,2	< 0,2	< 0,2	< 0,2	0,2	< 0,2	< 0,2	< 0,2
	Nickel Soluble	μg/L	260	<u>75</u>	4	3	8	10	5	23	7	7
	Plomb Soluble	μg/L	34	<u>10</u>	1	1	1	1	< 1	< 1	1	1
	Zinc Soluble	μg/L	67	<u>19</u>	140	30	30	20	< 10	20	10	<u>22</u>
C10-C50	Hydrocarbures pétroliers C10-C50	μg/L	3500	<u>1015</u>	100	< 100	100	100	< 100	< 100	100	< 100
COV	1,1,1,2-tétrachloroéthane	μg/L	470	<u>136</u>	-	-	-	-	< 0,1	-	-	< 0,1
	1,1,1-trichloroéthane	μg/L	2000	<u>580</u>	-	-	-	-	< 0,1	-	-	< 0,1
	1,1,2-trichloroéthane	μg/L	2400	<u>696</u>	-	-	-	-	< 0,1	-	-	< 0,1
	1,1-dichloroéthène	μg/L	320	<u>93</u>	-	-	-	-	< 0,1	-	-	< 0,1
	1,2-dichloroéthane	μg/L	9900	<u>2 871</u>	-	-	-	-	< 0,1	-	-	< 0,1
	1,2-dichloropropane	μg/L	2600	<u>754</u>	-	-	-	-	< 0,1	-	-	< 0,1
	1,3-dichloropropane	μg/L	5900	<u>1 711</u>	-	-	-	-	< 0,1	-	-	< 0,1
	1,3-dichloropropène (cis)	μg/L	300	<u>87</u>	-	-	-	-	< 0,1	-	-	< 0,1
	Benzène	μg/L	590	<u>171</u>	< 0,1	< 0,1	< 0,1	0,3	< 0,1	2,5	< 0,1	0,1
	Chloroforme	μg/L	1800	<u>522</u>	-	-	-	-	< 0,1	-	-	< 0,1
	Chlorure de vinyle	μg/L	53000	<u>15 370</u>	-	-	-	-	< 0,5	-	-	< 0,5
	Dichlorométhane	μg/L	13000	<u>3 770</u>	-	-	-	-	< 0,1	-	-	< 0,1
	Éthylbenzène	μg/L	420	<u>122</u>	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0.1
	m+p-Xylène	μg/L	820	<u>238</u>	-	-	-	-	< 0,1	-	-	< 0,1
	o-Xylène	μg/L	820	<u>238</u>	-	-	-	-	< 0,1	-	-	< 0,1
	Styrène	μg/L	190	<u>55</u>	-	-	-	-	< 0,1	-	-	< 0,1
	Tétrachlorure de carbone	μg/L	440	<u>128</u>	-	-	-	-	< 0,1	-	-	< 0,1
	Toluène	μg/L	580	<u>168</u>	2,9	< 0,1	3,5	< 0,1	< 0,1	< 0,1	< 0,1	0,2
	1,2-dichloroéthène (trans)	μg/L	300	<u>87</u>	-	-	-	-	< 0,1	-	-	< 0,1
	1,3-dichloropropène (trans)	μg/L	300	<u>87</u>	-	-	-	-	< 0,1	-	-	< 0,1
	1,2-dichlorobenzène	μg/L	70	<u>20</u>	-	-	-	-	< 0,1	-	-	< 0,1
	1,3-dichlorobenzène	μg/L	15000	<u>4 350</u>	-	-	-	-	< 0,1	-	-	< 0,1
	1,4-dichlorobenzène	μg/L	110	32 38	-	-	-	-	< 0,1	-	-	< 0,1
	Chlorobenzène	μg/L	130	<u>38</u>	-	-	-	-	< 0,1	-	-	< 0,1

8. <u>CONCLUSIONS</u>

La revue et l'examen détaillé des données recueillies dans le cadre de la présente étude permet à SLI de conclure les points suivants concernant la qualité des eaux de surface et souterraines sur le site de DRN à Saint Thomas :

- Les résultats de la campagne d'échantillonnage ont permis de dresser un portrait de la qualité des eaux souterraines et de surface pour le mois d'août 2005. Les résultats obtenus se situent dans le même ordre de grandeur que les valeurs mesurées antérieurement. Les résultats confirment donc la bonne représentativité des analyses précédentes.
- La comparaison des résultats des analyses chimiques de l'eau souterraine prélevée dans les puits d'observation situés en aval hydraulique des cellules d'enfouissement et les valeurs du bruit de fond des puits témoins F-308-A, F-311-A et P-407 indique clairement que la qualité des eaux souterraines de la majorité des puits en aval des anciennes cellules et près de la rivière St-Joseph a été affectée par le lixiviat. La contamination de l'eau observée dans ce secteur est toutefois normale compte tenu du type d'opération au site, c'est-à-dire, un lieu d'enfouissement de matières résiduelles opérant par atténuation naturelle.
- Le fait que les concentrations de certains éléments, en particulier les chlorures, diminuent en amont des puits où les valeurs élevées sont observées suggère que la progression du front de contamination s'est déplacé et a atteint la rivière St-Joseph. Les concentrations dans les puits près de la rivière constitueraient donc une indication de la concentration en ces éléments qui pourraient faire résurgence dans le lit de la rivière. Par contre, le panache de contamination pour d'autres éléments est moins étendu et continue sa progression vers la rivière, ce qui aura pour effet d'augmenter les concentrations dans les puits près de la rivière.
- Bien que l'opération du site d'enfouissement sanitaire respecte le cadre du règlement applicable, on constate que de l'eau souterraine contaminée rejoint la rivière St-Joseph où elle fait résurgence. On observe d'ailleurs une dégradation conséquente de la qualité de l'eau dans la rivière St-Joseph suite à son passage devant le LES. Cette dégradation est faible et ne cause pas de perte d'usage dans ce cours d'eau.
- Il nous apparaît que ce soit le contexte géologique du site qui soit responsable de la formation du dôme piézométrique. Celui-ci coïncide principalement avec un rehaussement local du fond de l'aquifère.
- La méthode retenue pour évaluer le potentiel aquifère du site dans le cadre du REIMR, c'est-à-dire, en évaluant le débit optimal pour le pompage d'un puits unique, représente à notre avis une approche réaliste pour évaluer le développement potentiel des ressources en eau souterraine. Le site étudié semble permettre préférablement l'aménagement de puits de faible profondeur, compte tenu de la faible épaisseur de l'aquifère superficiel de sable. La perméabilité des dépôts est assez forte, mais la faible épaisseur de l'aquifère limite les rabattements disponibles dans les puits. Ainsi, ces constatations confirment que le potentiel de l'aquifère est limité pour l'aménagement de puits à débits inférieurs à 25 m³/heure.
- Les résultats des campagnes d'échantillonnage antérieures ont démontré des dépassements aux critères dans quelques résidences sur tous les chemins ceinturant le

- site, notamment pour le fer et manganèse, les nitrates et les nitrites et quelques puits pour les coliformes totaux. Toutefois, les résidences sont toutes situées à l'extérieur des panaches de contamination des eaux souterraines qui sont localisés principalement au sud des anciennes cellules et en amont de la rivière St-Joseph. On peut en conclure que les problèmes de qualité sont plus vraisemblablement attribuables à des conditions naturelles ou aux activités agricoles du secteur ou à des installations septiques.
- L'aménagement de la nouvelle cellule étanche aura comme incidence directe une modification du régime d'écoulement des eaux souterraines. L'évaluation de cet impact par modélisation soulève cependant plusieurs questions. Malgré celles-ci, les caractéristiques hydrogéologiques de l'aquifère nous permettent de conclure que l'impact sur les niveaux d'eau dans les puits privés sera très faible.
- Finalement, la nouvelle cellule protègera efficacement les eaux souterraines tant et aussi longtemps que le système de pompage et traitement sera en activité. Le piège hydraulique maintenu par un pompage et un rabattement suffisant des eaux souterraines à l'intérieur de la cellule empêche la migration des eaux souterraines contaminées hors de la cellule. Il faudra donc s'assurer de la pérennité de cette opération.

SNC+LAVALIN INC.

Préparé par :

Martin Stapinsky, géol., M. Sc., Ph. D.

Chargé de projet

Projets environnementaux

Denis Isabel, ing. Ph.D. Hydrogéologue Senior Directeur de projet

MS/fb

9. RÉFÉRENCES

Bureau d'audiences publiques sur l'environnement, 2005. Projet d'agrandissement du lieu d'enfouissement sanitaire de St-Thomas, Rapport 211, juin.

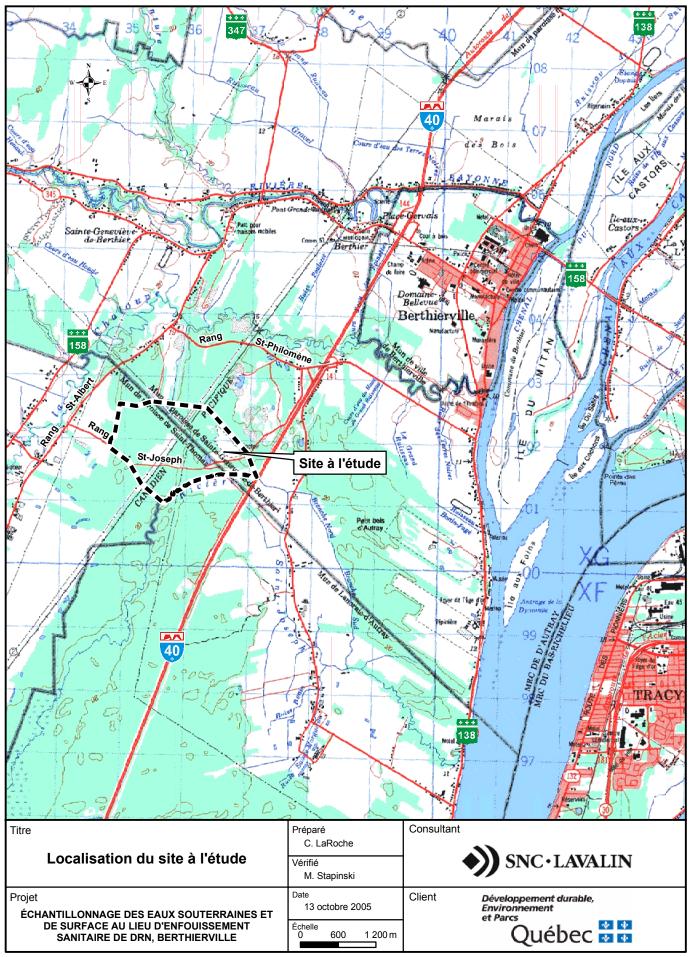
Consultants HGE inc, 2003a. *Mise à jour des impacts sur l'eau souterraine associés à l'établissement d'une cellule d'enfouissement étanche à Saint-Thomas*. Projet HGE-03-2200, juillet.

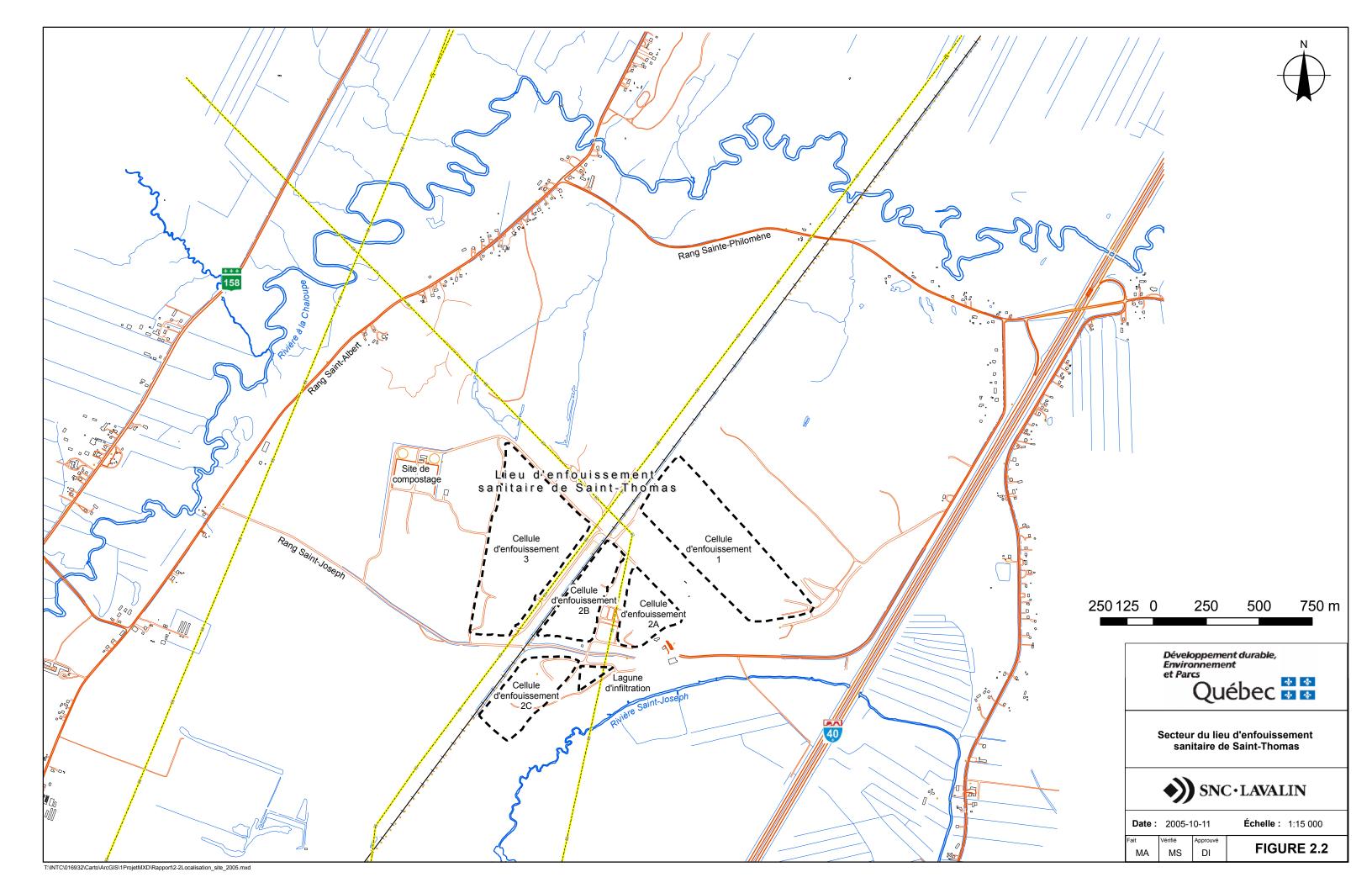
Consultants HGE inc., 2003b. Étude de caractérisation du milieu récepteur : Géologie, hydrogéologie et hydrologie, rapport HGE-01-1984, août.

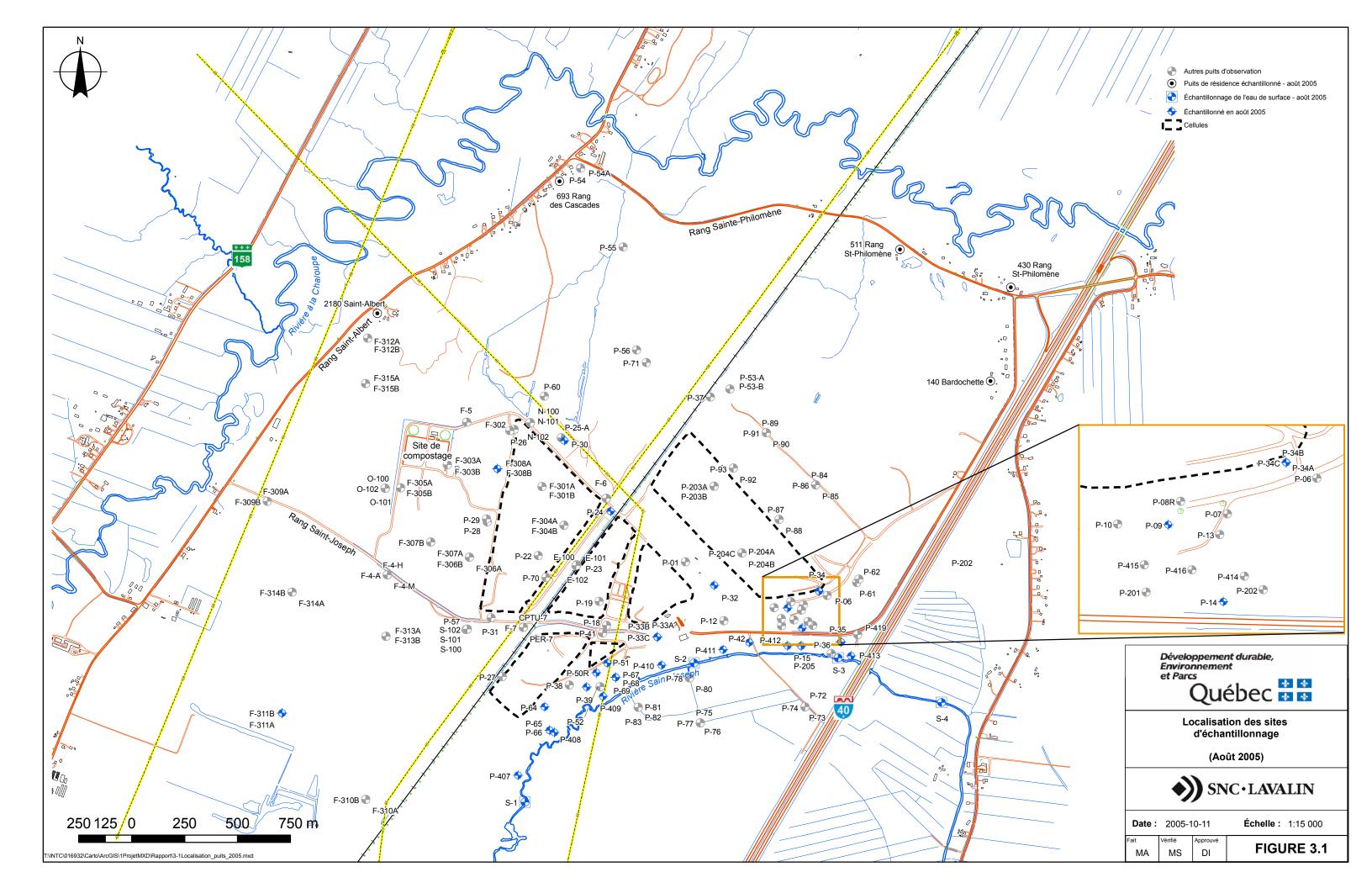
Levasseur, J. 2004. État actuel des eaux souterraines et de surface – SCW-152832 - Lieu d'enfouissement sanitaire de Saint-Thomas et de Sainte-Geneviève-de-Berthier, rapport d'analyse, novembre.

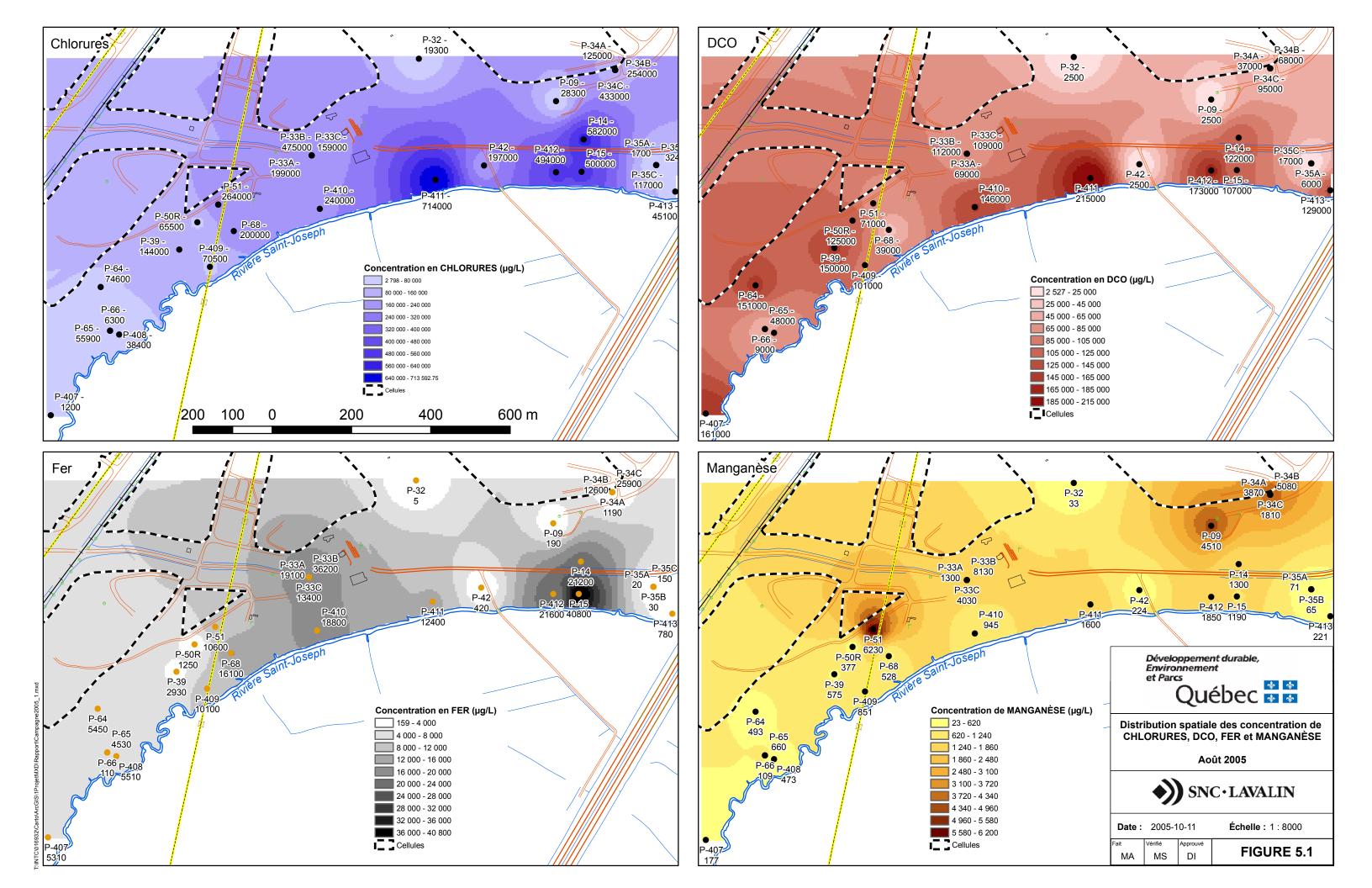
Mission HGE, 2005a. Suivi environnemental et 2004, eau souterraine et eau de surface, Lieu d'enfouissement sanitaire Ste-Geneviève-de-Bertthier et St-Thomas, N/Ref : 05308-101, juillet.

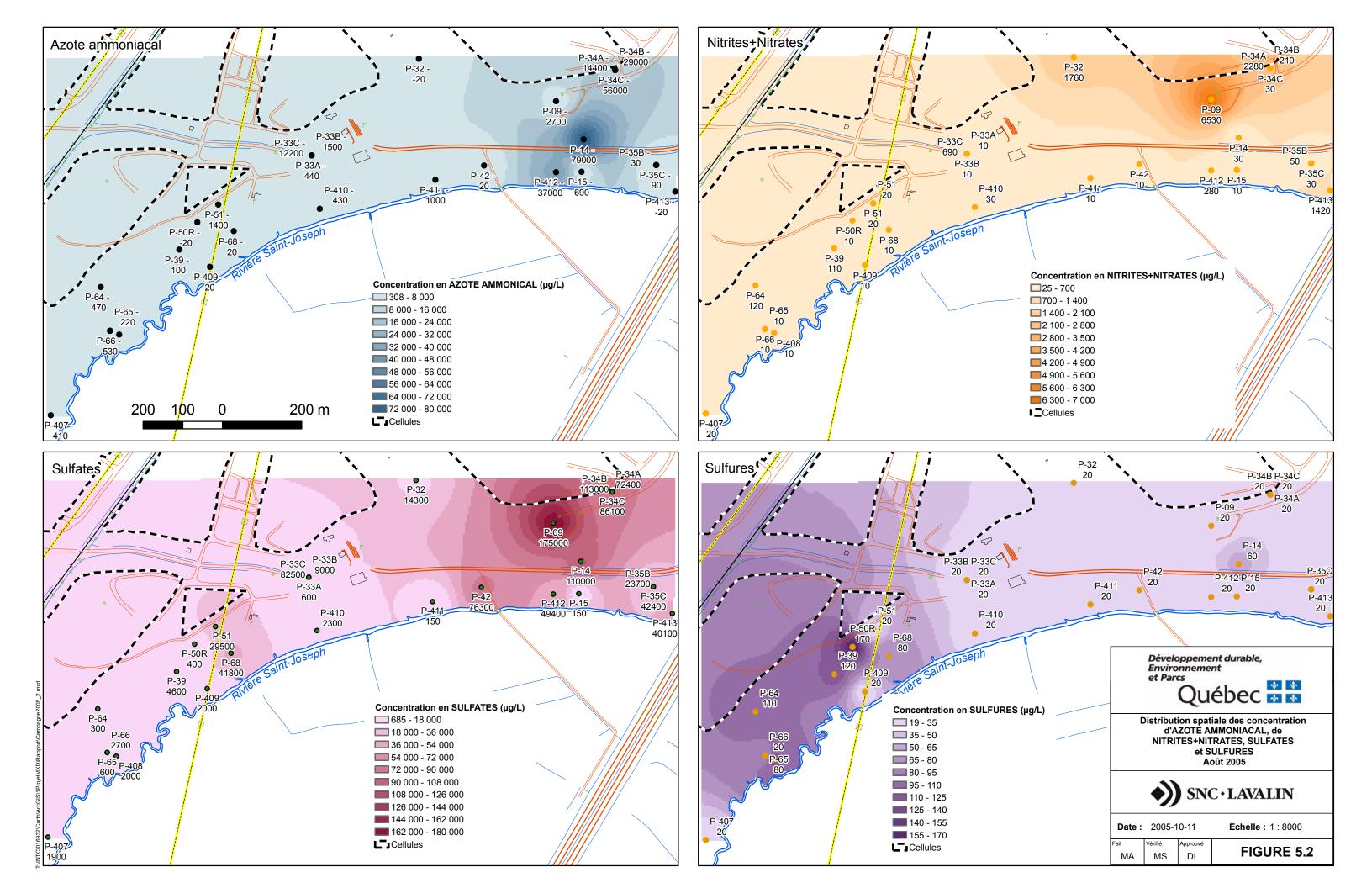
Mission HGE, 2005b. Suivi environnemental et 2004, centre de compostage, Lieu d'enfouissement sanitaire Ste-Geneviève-de-Berthier et St-Thomas, N/Ref : 05309-101, juillet.


Mission HGE, 2005c. Suivi environnemental et 2004, unité de traitement des boues (DAB) et lagune d'infiltration, Lieu d'enfouissement sanitaire Ste-Geneviève-de-Berthier et St-Thomas, N/Ref : 05310-101, juillet.


Tecsult inc., 2005a. Aménagement d'une cellule d'enfouissement technique à Saint-Thomas : Évaluation du potentiel aquifère, note technique 05-12951-0500, mars.


Tecsult inc., 2005b. Phase d'exploitation provisoire, cellule d'enfouissement C-3 : Suivi de la qualité des eaux souterraines faisant résurgence à la rivière St-Joseph. Rapport intermédiaire, août.


FIGURES


Figure 1.1	Localisation générale du site à l'étude
Figure 2.1	Secteur du lieu d'enfouissement sanitaire de St-Thomas
Figure 3.1	Localisation des sites d'échantillonnage (août 2005)
Figure 5.1	Distribution spatiale des concentrations en chlorures, DCO, fer et manganèse
Figure 5.2	Distribution spatiale des concentrations en azote ammoniacal, nitrates et nitrites sulfates et sulfures.
Figure 5.3	Évolution de la distribution spatiale des concentrations en chlorures entre 1993 et 2005.
Figure 6.1	Distribution spatiale des épaisseurs des dépôts granulaires de sable en surface

